We can represent permutations using **permutation matrices**. The key observation is that there is an obvious set bijection

$$[n] \cong \{e_1, e_2, \dots, e_n\}.$$

Example 1.34. Let $\sigma = (1\ 3\ 2) \in S_3$. We can represent σ as the linear transformation that sends each $e_i \mapsto e_{\sigma(i)}$:

$$\sigma \mapsto \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}$$

Recall from linear algebra the following two facts:

- The determinant of the $n \times n$ identity matrix $I_n \in M_{n \times n}(\mathbb{R})$ is 1.
- If M' is obtained from M by interchanging two different rows, then $\det A' = -\det A$.

Definition 1.35 (Sign of a permutation). Let $p \in S_n$ be a permutation. The **sign** of p is equal to the determinant of the permutation matrix P representing p:

$$\operatorname{sgn}(p) := \det(P).$$

The following exercise shows we could equivalently define sgn(p) to be $(-1)^k$, where k is the number of transpositions in any composition of transpositions equal to p. If sgn(p) = +1, we say that p is **even**; otherwise, if sgn(p) = -1, we say that p is **odd**.

Exercise 1.36. (a) Prove that the transpose of a permutation matrix is its inverse.

- (b) Prove that the determinant of a permutation matrix is always ± 1 .
- (c) Let $p \in S_n$, and write p as a composition (or equivalently, product) of k transpositions:

$$p = \tau_{i_1} \circ \tau_{i_2} \circ \ldots \circ \tau_{i_k}$$

Prove that *p* is even if and only if *k* is even, and that *p* is odd if and only if *k* is odd.

1.5 Complex numbers

The complex numbers \mathbb{C} are is pervasive in mathematics and will provide us with many interesting examples of groups.

Let i be a variable satisfying the relation $i^2 = -1$. The underlying set of \mathbb{C} is $\{a + bi \mid a, b \in \mathbb{R}\}$. In other words, the complex numbers are just polynomials (with real coefficients) in the variable i, except that any time you see i^2 , you can replace it with $-1 \in \mathbb{R}$.

This tells us how to add and multiply complex numbers. Addition is the same as vector addition in \mathbb{R}^2 :

$$(a+bi) + (c+di) = (a+c) + (b+d)i$$

Multiplication is the same as for polynomials:

$$(a+bi)(c+di) = ac + adi + bci + bdi^{2} = (ac - bd) + (ad + bc)i$$

What's more interesting is that one can also divide complex numbers. That is, every nonzero complex number has a *multiplicative inverse*:

$$\frac{1}{a+bi} = (a+bi)^{-1} = \frac{1}{a^2+b^2}(a-bi)$$

The variable of choice for complex numbers is usually z, followed by w. The **complex conjugate** of z = a + bi is $\bar{z} = a - bi$.

When we view z as a vector $\binom{a}{b} \in \mathbb{R}^2$, its length is given by $||z|| = \sqrt{a^2 + b^2}$. When we view z as a complex number, we call this the **absolute value** or **modulus** of z, and write

$$|z| = \sqrt{a^2 + b^2}.$$

⁴This is in analogy with the conjugates we learn about in precalculus: $a \pm b\sqrt{k}$.

Exercise 1.37. Verify that $z\bar{z} = |z|^2 = a^2 + b^2$, and observe that

$$z^{-1} = \frac{\overline{z}}{|z|^2}.$$

It is often easier to work with polar coordinates (r, θ) rather than rectangular coordinates (x, y). We can write any complex number z = x + iy in polar coordinates (r, θ) where

- r = |z|, the length of the vector z
- θ is the angle the vector z makes with the real axis (which is identified with the x-axis in \mathbb{R}^2).

Recall from precalculus that to translate from (r, θ) to (x, y), we compute

$$x = r\cos\theta$$
 $y = r\sin\theta$.

For Taylor series reasons, we can write

$$e^{i\theta} = \cos\theta + i\sin\theta$$
.

Euler's formula says that $e^{\pi i} = -1$, and therefore $e^{2\pi i} = 1$.

Therefore if z=x+iy, and (x,y) in rectangular coordinates translates to (r,θ) in polar coordinates, we can write

$$z = x + iy = re^{i\theta}.$$

We will use this notation *extensively*, because it makes complex multiplication very simple. Let $z_1 = r_1 e^{i\theta_1}$ and $z_2 = r_2 e^{i\theta_2}$. Then

$$z_1 z_2 = (r_1 e^{i\theta_1}) (r_2 e^{i\theta_2}) = (r_1 r_2) e^{(\theta_1 + \theta_2)i}.$$

Geometrically, multiplication by i represents rotating by $\pi/2$ counterclockwise (CCW). That is, the vector iz is just the vector z rotated by $\pi/2$.

Example 1.38. The unit circle S^1 inside \mathbb{C} is the set of complex numbers of modulus 1:

$$S^1 = \{ e^{i\theta} \mid \theta \in \mathbb{R} \}.$$

Note that I could have also written $\theta \in [0, 2\pi)$, or any other interval of this shape of length 2π , because $e^{2\pi i} = 1$.

This is a group under complex multiplication. (See HW01 for the same group described in a different way.)

Exercise 1.39. Prove that the **circle group** S^1 (under complex multiplication) is *not* cyclic.

Exercise 1.40. Prove that $\mathbb{C}^{\times} = \mathbb{C} - \{0\}$ is a group under complex multiplication.

Exercise 1.41. Find a *representation* of \mathbb{C}^{\times} in $GL_2(\mathbb{R})$. That is, assign every element $z \in \mathbb{C}^{\times} = \mathbb{C} - \{0\}$ to a 2×2 invertible matrix so that matrix multiplication agrees with multiplication in \mathbb{C}^{\times} .

1.6 Aside: Real algebras

Here's an interesting nonabelian group.

Definition 1.42. The quaternion group H is the group consisting of elements

$$\{\pm 1, \pm i, \pm j, \pm k\}.$$

where ± 1 commutes with all elements, and multiplication is determined by

$$\begin{split} &\pm 1\mathbf{i} = \pm \mathbf{i}, &\pm 1\mathbf{j} = \pm \mathbf{j}, &\pm 1\mathbf{k} = \pm \mathbf{k} \\ &\mathbf{i}^2 = \mathbf{j}^2 = \mathbf{k}^2 = -1 \\ &\mathbf{i}\mathbf{j} = -\mathbf{j}\mathbf{i} = \mathbf{k}, &\mathbf{j}\mathbf{k} = -\mathbf{k}\mathbf{j} = \mathbf{i}, &\mathbf{k}\mathbf{i} = -\mathbf{i}\mathbf{k} = \mathbf{j}. \end{split}$$

Remark 1.43. This construction of \mathbb{C} from polynomials with real coefficients makes \mathbb{C} into a real *algebra*⁵. We can keep going, and define the quaternions \mathbb{H} and the octonions \mathbb{O} . However, the quaternions aren't commutative, and the octonions aren't even associative.

Exercise 1.44. (Advanced)

- 1. Define the *Hamiltonian quaternions* \mathbb{H} as polynomials in $\mathbf{i}, \mathbf{j}, \mathbf{k}$ with real coefficient, subject to the relations in the group H. This makes $\mathbb{H} = \mathbb{R}[H]$, the *group ring* built from \mathbb{R} and H. (We will talk more about rings later in the course.)
- 2. Define $\mathbb H$ differently, now using $\mathbb C$ as the coefficients. (This describes $\mathbb H$ as an algebra over $\mathbb C$.)
- 3. Use the description of $\mathbb H$ as an algebra over $\mathbb C$ to find a representation of $\mathbb H$ by 2×2 matrices with complex entries.

1.7 Subgroups

Definition 1.45. A subset H of a group G is a **subgroup** (written $H \leq G$) if it has the following properties:

- *Closure*: If $a, b \in H$, then $ab \in H$ as well.
- *Identity*: $1 = 1_G \in H$
- *Inverses*: If $a \in H$, then $a^{-1} \in H$ as well.

Example 1.46. The *even integers* $2\mathbb{Z} := \{2k \mid k \in \mathbb{Z}\}$ is a proper subgroup of \mathbb{Z} .

Similarly, for any $n \in \mathbb{N}$, the set of multiples of n, denoted $n\mathbb{Z} := \{nk \mid k \in \mathbb{Z}\}$, is a subgroup of \mathbb{Z} . (Note that $1\mathbb{Z} = \mathbb{Z}$ is not a proper subgroup.)

Warning The book writes $\mathbb{Z}n$ instead of $n\mathbb{Z}$, and hence writes the group $\mathbb{Z}/12\mathbb{Z}$ as $\mathbb{Z}/\mathbb{Z}12$. Either notation is mathematically reasonable, since \mathbb{Z} is commutative. However, I prefer the more common notation $\mathbb{Z}/12\mathbb{Z}$.

Exercise 1.47. Convince yourself that for natural numbers $n, m \in \mathbb{N}$, $(nm)\mathbb{Z}$ is a subgroup of both $m\mathbb{Z}$ and $n\mathbb{Z}$. It may help to start with an example, e.g. n = 2, m = 3.

Example 1.48. The **trivial group** is the group with one element, the identity. Any nontrivial group G automatically has at least two subgroups:

- 1. the trivial subgroup $H = \{1\} \leq G$
- 2. H = G, the whole group itself.

A subgroup $H \leq G$ where $H \neq G$ (as a set) is called a **proper subgroup**.

A group G that has no nontrivial, proper subgroups is called a **simple group**.

Example 1.49. Here are some more examples of subgroups.

- 1. $\mathbb{Z} \leq \mathbb{Q} \leq \mathbb{R} \leq \mathbb{C}$, where the group operation is +
- 2. $S^1 \leq (\mathbb{C}, \cdot)$
- 3. $S_k \leq S_n$ where $k \leq n \ (k, n \in \mathbb{N})$

The following proposition gives a potentially easier way to check whether a subset $H \subset G$ is a subgroup.⁶

Proposition 1.50. (The Subgroup Criterion) A subset H of a group G is a subgroup if and only if $H \neq \emptyset$ and for all $a, b \in H$, $ab^{-1} \in H$.

Exercise 1.51. Prove Proposition 1.50.

⁵This is a term we haven't defined yet.

⁶However, I often still just check the conditions in the definition.