We can represent permutations using permutation matrices. The key observation is that there is an
obvious set bijection
[n] = {e1,ea,...,en}
Example 1.34. Let 0 = (1 3 2) € S;3. We can represent o as the linear transformation that sends each
€; > €4 (i)-

010
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Recall from linear algebra the following two facts:
® The determinant of the n x n identity matrix I,, € M, x,(R) is 1.

e If M’ is obtained from M by interchanging two different rows, then det A’ = — det A.

Definition 1.35 (Sign of a permutation). Let p € S, be a permutation. The sign of p is equal to the determi-
nant of the permutation matrix P representing p:

sgn(p) := det(P).

The following exercise shows we could equivalently define sgn(p) to be (—1)¥, where k is the number
of transpositions in any composition of transpositions equal to p. If sgn(p) = +1, we say that p is even;
otherwise, if sgn(p) = —1, we say that p is odd.

Exercise 1.36.  (a) Prove that the transpose of a permutation matrix is its inverse.
(b) Prove that the determinant of a permutation matrix is always £1.
(c) Let p € S,,, and write p as a composition (or equivalently, product) of & transpositions:
pP=T; OTj, 0...0T;,

Prove that p is even if and only if k is even, and that p is odd if and only if & is odd.

1.5 Complex numbers

The complex numbers C are is pervasive in mathematics and will provide us with many interesting exam-
ples of groups.

Let i be a variable satisyfing the relation i = —1. The underlying set of C is {a + bi | a,b € R. In other
words, the complex numbers are just polynomials (with real coefficients) in the variable i, except that any
time you see %, you can replace it with —1 € R.

This tells us how to add and multiply complex numbers. Addition is the same as vector addition in R?:

(a+bi)+ (c+di)=(a+c)+ (b+d)i

Multiplication is the same as for polynomials:
(a+bi)(c + di) = ac + adi + bei + bdi® = (ac — bd) + (ad + be)i
What's more interesting is that one can also divide complex numbers. That is, every nonzero complex
number has a multiplicative inverse:
1 1
a+bi A+
The variable of choice for complex numbers is usually z, followed by w. The complex conjugate of

z=a-+biisz=a—bit

= (a+ bi)™* (a — bi)

When we view z as a vector Z € R?, its length is given by ||z|| = Va? 4+ b2. When we view z as a

complex number, we call this the absolute value or modulus of z, and write

|2] = Va? + b2.

4This is in analogy with the conjugates we learn about in precalculus: a + bv/k.




Exercise 1.37. Verify that 2z = |2|? = a® + b?, and observe that
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It is often easier to work with polar coordinates (r, #) rather than rectangular coordinates (x,y). We can
write any complex number z =  + iy in polar coordinates (r, §) where
* 1 = |z|, the length of the vector z

* 0 is the angle the vector z makes with the real axis (which is identified with the x-axis in R?).

Recall from precalculus that to translate from (r, §) to (x,y), we compute
x =rcosf y=rsind.

For Taylor series reasons, we can write

0

e" = cosf +isinb.

Euler’s formula says that e™ = —1, and therefore e>™ = 1.
Therefore if z = x + iy, and (=, y) in rectangular coordinates translates to (r, #) in polar coordinates, we

can write

z=:c+z'y=rew.

We will use this notation extensively, because it makes complex multiplication very simple. Let z; = 7€'

and zy = r9e"%2. Then _ ‘ ‘
2129 = (7‘167’91) (7'26202) = (7'17‘2)6(91-’_92)1.

Geometrically, multiplication by i represents rotating by /2 counterclockwise (CCW). That is, the vec-
tor iz is just the vector z rotated by 7 /2.

Example 1.38. The unit circle S* inside C is the set of complex numbers of modulus 1:
St = {0 e R}.

Note that I could have also written § € [0,27), or any other interval of this shape of length 27, because
82772' =1.

This is a group under complex multiplication. (See HWO1 for the same group described in a different
way.)

Exercise 1.39. Prove that the circle group S! (under complex multiplication) is not cyclic.
Exercise 1.40. Prove that C* = C — {0} is a group under complex multiplication.

Exercise 1.41. Find a representation of C* in GLy(R). That is, assign every element z € C* = C — {0} to a
2 x 2 invertible matrix so that matrix multiplication agrees with multiplication in C*.

1.6 Aside: Real algebras

Here’s an interesting nonabelian group.

Definition 1.42. The quaternion group H is the group consisting of elements
{£1, i, +j, +k}.

where +1 commutes with all elements, and multiplication is determined by

+li=+i, +lj==£j,  +lk==k
P=j=k>=-1
ij=-ji=k.  jk=-kj=i, ki=-ik=}].



Remark 1.43. This construction of C from polynomials with real coefficients makes C into a real algebra®.
We can keep going, and define the quaternions H and the octonions O. However, the quaternions aren’t
commutative, and the octonions aren’t even associative.

Exercise 1.44. (Advanced)

1. Define the Hamiltonian quaternions H as polynomials in i, j, k with real coefficient, subject to the rela-
tions in the group H. This makes H = R[H], the group ring built from R and H. (We will talk more
about rings later in the course.)

2. Define H differently, now using C as the coefficients. (This describes H as an algebra over C.)

3. Use the description of H as an algebra over C to find a representation of H by 2 x 2 matrices with
complex entries.

1.7 Subgroups

Definition 1.45. A subset H of a group G is a subgroup (written H < G) if it has the following properties:
e Closure: If a,b € H, then ab € H as well.
o Identity: 1=1g € H
e Inverses: If a € H, then a~! € H as well.

Example 1.46. The even integers 27 := {2k | k € Z} is a proper subgroup of Z.
Similarly, for any n € N, the set of multiples of n, denoted nZ := {nk | k € Z}, is a subgroup of Z. (Note
that 1Z = Z is not a proper subgroup.)

Warning The book writes Zn instead of nZ, and hence writes the group Z/127Z as Z/7Z12. Either notation
is mathematically reasonable, since Z is commutative. However, I prefer the more common notation Z/127Z.

Exercise 1.47. Convince yourself that for natural numbers n, m € N, (nm)Z is a subgroup of both mZ and
nZ. It may help to start with an example, e.g. n = 2,m = 3.

Example 1.48. The trivial group is the group with one element, the identity. Any nontrivial group G
automatically has at least two subgroups:

1. the trivial subgroup H = {1} < G
2. H = G, the whole group itself.

A subgroup H < G where H # G (as a set) is called a proper subgroup.
A group G that has no nontrivial, proper subgroups is called a simple group.

Example 1.49. Here are some more examples of subgroups.
1. Z < Q < R < C, where the group operation is +
2. 81 <(C,)
3. Sk < S, where k <n (k,n € N)

The following proposition gives a potentially easier way to check whether a subset H C G is a sub-
6
group.

Proposition 1.50. (The Subgroup Criterion) A subset H of a group G is a subgroup if and only if H # () and
foralla,bc H,ab™! € H.

Exercise 1.51. Prove Proposition 1.50.

5This is a term we haven’t defined yet.
5However, I often still just check the conditions in the definition.



