HW 09
@ SOLUTION.

Let f(z) denote the polynomial in question.
(a) Irreducible: f(z) doesn’t have a linear factor in Fa[z] since f(1) # 0 mod 2.

(b) Reducible: f(1) =0 mod 3. Use polynomial division to compute f(z)/(z—1) = 2?2 +x—1 =:
g(x). Since g(1),g(2) #0 mod 3, g(z) is irreducible. Therefore f(z) = (z — 1)(z? + z — 1).

(¢) 2*—4 = (22 +2)(2% —2); 2,3 are not squares mod 5, so these quadratic factors are irreducible.

(d) Let y = 22; then f(z) = y% + 10y + 1. We can use the quadratic equation to compute the
roots, and see that they are not integers (or even rational numbers).

(e) f(x) is Eisenstein at p = 3, and is therefore irreducible.

(f) Same as above.

@
SOLUTION.
(a) Since Q(2+ v/3) = Q(v/3), the degree of the extension over Q is 2.

(b) Let o = V/2; then the element is 1 + a + o2, which is in Q(a). The degree of « is 3. The
degree of 1 + a + « is therefore a factor of 3. Since it’s not in Q, the degree is 3.

(c) Let @ = v/3+2v2. Then o? = 3 + 22 € Q(v/2), which has degree 2 over Q. Check that
indeed, degg(a) = 4 (because o ¢ Q(v2)).

(d) Use the same kinds of calculations in the previous part; conclude that degg(a) = 4.

@ SOLUTION.
If a% € Q for every i, then the degree of the extension F//Q is a power of 2, say 2k If 32 e F,

QCc Q(V2)C F,so [Q(ﬁ) : Q] must divide 2k But degQ(w) =3.



SOLUTION.
It’s clear that Q(v/2+v/3) € Q(v/2,V/3). Compute the powers of a to obtain linear combinations
of powers of  equal to v/2 and /3, proving the reverse inclusion. (See scratchwork for how I thought

about it.)

The degree of v/2 over Q is 2, and the degree of /3 over Q(v/2) is also 2 (since /3 € Q(v/2),
the degree is more than 1), the total degree is 4.

The minimal polynomial is m, g(z) = z* — 1022 + 1.
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