HW 09

SOLUTION.

Let f(x) denote the polynomial in question.

- (a) Irreducible: f(x) doesn't have a linear factor in $\mathbb{F}_2[x]$ since $f(1) \not\equiv 0 \mod 2$.
- (b) Reducible: $f(1) \equiv 0 \mod 3$. Use polynomial division to compute $f(x)/(x-1) = x^2 + x 1 = g(x)$. Since $g(1), g(2) \not\equiv 0 \mod 3$, g(x) is irreducible. Therefore $f(x) = (x-1)(x^2 + x 1)$.
- (c) $x^4 4 = (x^2 + 2)(x^2 2)$; 2,3 are not squares mod 5, so these quadratic factors are irreducible.
- (d) Let $y = x^2$; then $f(x) = y^2 + 10y + 1$. We can use the quadratic equation to compute the roots, and see that they are not integers (or even rational numbers).
- (e) f(x) is Eisenstein at p=3, and is therefore irreducible.
- (f) Same as above.

②

SOLUTION.

- (a) Since $\mathbb{Q}(2+\sqrt{3})=\mathbb{Q}(\sqrt{3})$, the degree of the extension over \mathbb{Q} is 2.
- (b) Let $\alpha = \sqrt[3]{2}$; then the element is $1 + \alpha + \alpha^2$, which is in $\mathbb{Q}(\alpha)$. The degree of α is 3. The degree of $1 + \alpha + \alpha$ is therefore a factor of 3. Since it's not in \mathbb{Q} , the degree is 3.
- (c) Let $\alpha = \sqrt{3 + 2\sqrt{2}}$. Then $\alpha^2 = 3 + 2\sqrt{2} \in \mathbb{Q}(\sqrt{2})$, which has degree 2 over \mathbb{Q} . Check that indeed, $\deg_{\mathbb{Q}}(\alpha) = 4$ (because $\alpha \notin \mathbb{Q}(\sqrt{2})$).
- (d) Use the same kinds of calculations in the previous part; conclude that $\deg_{\mathbb{Q}}(\alpha) = 4$.

SOLUTION SOLUTION

If $\alpha_i^2 \in \mathbb{Q}$ for every i, then the degree of the extension F/\mathbb{Q} is a power of 2, say 2^k . If $\sqrt[3]{2} \in F$, $\mathbb{Q} \subset \mathbb{Q}(\sqrt[3]{2}) \subset F$, so $[\mathbb{Q}(\sqrt[3]{2}):\mathbb{Q}]$ must divide 2^k . But $\deg_{\mathbb{Q}}(\sqrt[3]{2}) = 3$.

SOLUTION.

It's clear that $\mathbb{Q}(\sqrt{2}+\sqrt{3})\subset\mathbb{Q}(\sqrt{2},\sqrt{3})$. Compute the powers of α to obtain linear combinations of powers of α equal to $\sqrt{2}$ and $\sqrt{3}$, proving the reverse inclusion. (See scratchwork for how I thought about it.)

The degree of $\sqrt{2}$ over \mathbb{Q} is 2, and the degree of $\sqrt{3}$ over $\mathbb{Q}(\sqrt{2})$ is also 2 (since $\sqrt{3} \notin \mathbb{Q}(\sqrt{2})$, the degree is more than 1), the total degree is 4.

The minimal polynomial is $m_{\alpha,\mathbb{Q}}(x) = x^4 - 10x^2 + 1$.

Calculations:

$$\frac{1}{2}\alpha(\alpha^2-5) = (\sqrt{2}+\sqrt{3})\sqrt{6} = 2\sqrt{3} + 3\sqrt{2}$$

$$\Rightarrow \frac{1}{2}\alpha(\alpha^2-5) - 2\alpha = \sqrt{2} \text{ and } \frac{1}{2}\alpha(\alpha^2-5) - 3\alpha = -\sqrt{3}$$

$$\Rightarrow \sqrt{2},\sqrt{3} \in \mathcal{Q}(\alpha). \Rightarrow \mathcal{Q}(\sqrt{2},\sqrt{3}) \subseteq \mathcal{Q}(\alpha). \Rightarrow \mathcal{Q}(\alpha) = \mathcal{Q}(\sqrt{2},\sqrt{3}).$$

$$[Q(x):Q] = 4 \quad \text{Since} \quad (Q(\sqrt{z}):Q] = 2, \text{ and } \sqrt{3} \neq Q(\overline{z}),$$

$$\text{So} \left[Q(\sqrt{z},\sqrt{3}):Q(\sqrt{z})\right] = 2$$

$$\text{C} \quad \chi^2 - 3$$

3

(a) $x^4 - 2 = 0 \rightarrow x^4 = 2$ let $x = 4\sqrt{2}$. $(X^2+\sqrt{2})(X^2-\sqrt{2})=0$ voots: $\pm id$, $\pm d$. One generated by id. Splitting feed: Q(id,d) = Q(i,d) deg Q(x) = 4 Since X4-2 is Essentin@p=2 and thus irreducible $i \notin \Omega(d) \subset \mathbb{R}$, so $[\Omega(i,d): \Omega(d)] = 2$ $(m_i, \Omega(d)(x) = x^2 + 1)$ $\Rightarrow [Q(i,d):Q]=8.$

(b) X4+2 is also Eisenstein at p=2 and is irreducible.

let d=452, S = a primiture 8th noot of unity. (4th noot of -1) The 4 nexts are $5 \, d$, $5^3 d$, $5^5 d$, $5^7 d$. = $\pm 5 d$, $\pm 5^3 d$

Note Sod/Sd=S2 = i & Splut field = Q(Sd, S3d) So $Q(Sa, S^3a) = Q(Sa, i)$.

Also, $i \notin Q(Sd)$. $\Rightarrow [Q(Sd,i):Q] = 8$. Considerations.

$$y=x^{2} \sim f(x) = y^{2} + y + 1$$

 $y = \frac{-1 \pm \sqrt{1-4}}{2} = -\frac{1}{2} \pm i \frac{\sqrt{3}}{2}$

roots $\eta f(x)$: $\pm \frac{1}{2} \pm i \frac{\sqrt{3}}{3}$

Note: 2+i== x, = ei=

Splitting feld: Q(eit) Since all other voots are powers of eit.

Note:
$$Q(\frac{1}{2} + i\frac{\pi}{2}) = Q(i\sqrt{3}) = Q(\sqrt{-3})$$

crost of x2+3.

$$\Rightarrow [Q(e^{i\frac{\pi}{3}}):Q] = 2.$$

(d)
$$f(x) = x^{6} - 4 = (x^{3} + 2)(x^{3} - 2)$$

Let $d = \sqrt[3]{2}$, $S = S_{6}$.

[Q(A):Q]=3

Since S = Sd/x & split field,

the splitting feed = Q(3, x).

 $[Q(\alpha):Q]=3$, and $deg_{Q(\alpha)}(\varsigma)=3. \Longrightarrow [Q(\varsigma,\alpha):Q]=9$.

6 prime p, at \mathbb{F}_p^{\times} $f(x) = x^p - x + a$

Separable:

If α is a root, then $(\alpha+1)^{p} - (\alpha+1) + \alpha$ $= \alpha^{p} + 1 - (\alpha+1) + \alpha$ $= \alpha^{p} - \alpha + \alpha = 0$

Since any K/F_p has F_p has the pinne subfield, (char K=p) $\{d, d+1, ..., d+(p-1)\}$ are all distinct, and are all roots. There are p of these, so these are the neots of f(x). $\implies f(x)$ is separable.

meducible:

Let $b \in \mathbb{F}_p$. $\Longrightarrow b^{p-1} = 1$

Then $f(b) = b^p - b + a = b - b + a = a \neq 0$.

⇒f has no woots in Fp

 \Rightarrow fis irreducible (since any root α of β must have degree a power of β).

$$\mathcal{P} f(x) \in \mathbb{F}_{p}(x)$$

The multinomial coefficients are all multiples of p, except the pure terms.

Can use binomial coefficients + induct:
$$f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$$

$$f(x)^p = (a_n x^n)^p + (a_{n-1} x^{n-1} + \dots + a_1 x + a_0)^p$$