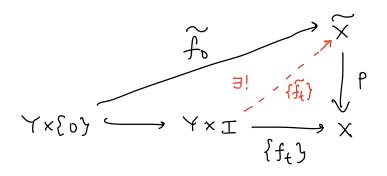
## Sunnay of Triday results:

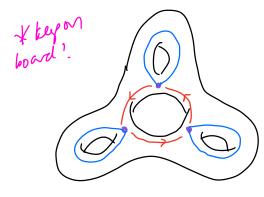
(a) Homotopy lifting property (of covering mgs) Relating maps from  $Y \rightarrow X$  to maps  $Y \rightarrow \widetilde{X}$ :

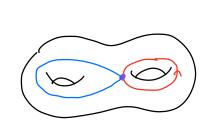


In particular:

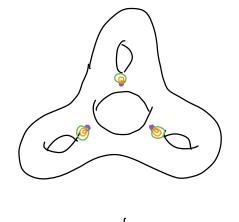
1 path lifting

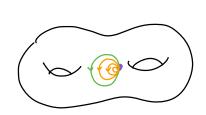






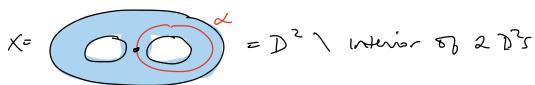
(2) lifting htpy of paths



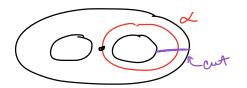


## Aside: Budding (small) over

eg. Consider

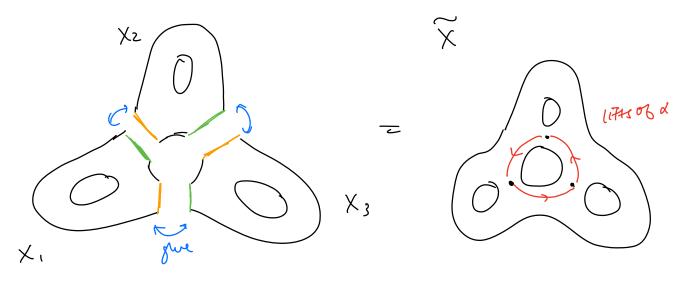


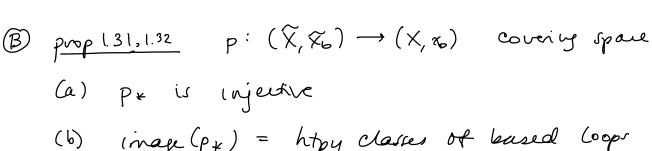
Want to inwap & by a factor of 3:



Take 3 opies  $X_i = \frac{s_i}{t \in \{0,l,2\}}$   $X_i = \frac{s_i}{t} \left| \frac{s_i}{s_i} \right|$  Sighed to  $\gamma_i$ 

alve Sito pin (mod 3)





more precisely, I bijection:

1

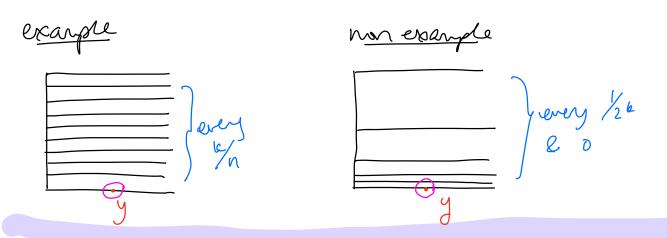
Continue: What about litts of general maps (not just homotopies)?

- htpies ar special because...

dut. A space Y is locally parti-costd it

If y \( \text{Y} \) and each nobbd U of y,

I open nobbd V = U of y that is particited.



Existence of litts ] prop 1.33 (lifting Criterion) for general regar Given  $p:(\hat{X},\mathcal{R}) \to (X, \mathcal{R}_o)$  Covering space  $f:(Y,y_0) \rightarrow (X,\chi_0)$ with Y path-cutd & locally path cutd, then a lift  $\hat{f}:(Y,y_0) \to (X, %)$  exists iff  $f_*(\pi(Y,y_0)) = P_*(\pi(\widetilde{X},\widetilde{\chi}))$ m(Y,yo) — f\* pf. ( dear from right dragram: (1) Use path-atdress to define f let y & Y. Pick post yo yy. Then fy is a path in X stouthy at xo. #LP = ! lift for starting at To. Dethe  $f(y) = f_{\gamma}(1)$ .

we nade a choice: path y.

Need to show F(y) is well-defined. If you chose instead yo my, g:= y'\ is a loop based or yo → GJ € TG(Y,yo)  $\Rightarrow$  ho:=  $(f\gamma') \cdot (f\gamma)$  is a loop based at  $x_0$ By assurption  $f_*(\pi_i(Y,y_0)) \subseteq P_*(\pi_i(X,X_0))$ ⇒ [ho] ∈ p<sub>\*</sub> (α, (x, x, )) → I h, € [ho] s.t. h, rsaloop in X bandat X. Since h, Is a loop, ho must also be-Common againent - ho is infact a loge By uniquenes (HCP), h. 1 [0,0.5] is fg' (three as far) ad hologin is for (there as fact)  $\Rightarrow \widetilde{f\gamma'(1)} = \frac{\widetilde{f\gamma}(0)}{f\gamma(0)} = f\gamma(1) = h_0(0.5).$ 

## (heree the chour of y does not notes, and of is well degined) 1 Use local path-antiduers to show f is continuous let U be an everly sovered (open) about of fly) ce fly) < u < X, u has left & s.d.

p: ũ -> U era homes.

Onoose a path-cott open used Voty of  $f(v) \subset U$ 

ie. f cont => f-1 (W) open; Local perth and aers of Y => 3 path cotd V C f-1(U).

(WTS fly ir Continuous)

For y'EV, choose a fixed path yours y and path y may  $(y \subset V)$ .

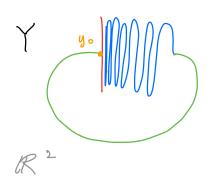
fo (fy): (fy). (fy) has ungve lift (fy). (fy) Where  $f_{ij} = p^{-1} \circ f_{ij}$  (where  $p^{-1}$  is the local inverse.)

$$= p^{-1} \circ f \circ \gamma(\iota) = p^{-1} \circ f(\gamma')$$

E12

The litting criticum can indeed fail when Y is not locally path antd:

eg The quasi-circle: Y = unin of 3 pieces:



- · [-1,17 on y-axis
- · porton of  $y = \sin(\frac{1}{x})$  to for  $x \in (0, \frac{1}{4}]$
- · an are from (to, 0) to (0,0) as shown.
- · not locally pash cutd: consider points in red.
- · I quotent map  $f: Y \rightarrow S'$ that sends are of red to a point



\* mentally cheed this is continuous

- There is a covering space  $p: R \to S'$  $\pi(Y_i y_0) = 1 \subset p_*(\pi_i(R_i, 0)) = 1 \subset \pi_i(S', s_0) \subseteq \mathbb{Z}.$
- · But f does not lift to  $\hat{f}: Y \rightarrow \mathbb{R}$ If  $\hat{f}$  were a lift, by continuity you will have

  to be sent to both on and not in  $\mathbb{R}$  Clifts of  $S_0$ ).

[unqueres of lifts]

and 124 (11: 1" prop 1.34 (Unique lifting property) Airen a Covering spæl  $p: \widehat{X} \to X$  and a map  $f: Y \rightarrow X$ , if the little  $f_1, f_2: Y \rightarrow \widetilde{X}$ agree at one point of Y, and Y is concerted. ther f, ad fr gene ar all of Y. Converted

A

Converted ii. given if f exist, it is unique. let yex, wo f, (y) = f. (y). U ar everly covered open nobled of fly), in X  $\widetilde{\mathcal{U}}_{i}$ ,  $\widetilde{\mathcal{U}}_{2}$  the sheet containing  $\widetilde{f}_{i}(g)$ ,  $\widetilde{f}_{2}(g)$   $\widetilde{f}_{i}$  cas  $\Longrightarrow \widetilde{\mathcal{Z}}$  would  $N_{i}'$  of g s.s.  $\widetilde{f}_{i}(N) \subset \widetilde{\mathcal{U}}_{i}$ 

Take N = N, nNz.

- If  $\widehat{f}_{i}(y) \neq \widehat{f}_{i}(y)$  then  $\widehat{\mathcal{U}}_{i} \cap \widehat{\mathcal{U}}_{i}$   $\Rightarrow \widehat{f}_{i}(y') \neq \widehat{f}_{i}(y') \quad \forall y' \in \mathbb{N}.$  $\Rightarrow \{y \in Y \mid \widehat{f}_{i}(y) \neq \widehat{f}_{i}(y)\} \text{ is open in } Y$
- If  $f_1(y) = f_2(y)$  then  $U_1 = U_2$   $\Rightarrow f_1 = f_2$  on N (rice  $pf_1 = pf_2$  and  $p_1$ 's expedie on N)

  - $\Rightarrow \{y \in Y \mid f_i(y) = f_i(y)\} = \text{exten} Y \text{ or } \phi.$

Now toward proving class it castin of covering spaces. We restrict to locarly paser could X.

locally path cotd => path components = components

So X path and > X converted.

• X loc path ant  $\Rightarrow X$  is loc path antel So X path-ant  $\Leftrightarrow X$  converted.

I we can skep saying "path" as lary as

X is locarly path and,

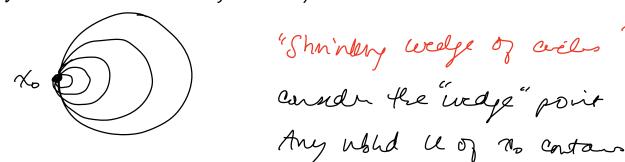
1st question: When does X have a singsly connected covering spare?

Necessary Cordedin:

den X is semilocarly singly-connected if every point  $x \in X$  has a nobbel U s.t. the inclusion-colored hon  $i_*: \pi_*(U, x) \longrightarrow \pi_*(X, x)$  is trival.

Claen It X has a singly and X, then X must be senilocally ruply and. p: X -> X inveral over. XXX has evenly covered noted le Pickay Ut XeW. Each copy in U lifts to a well ligge logs in a (som the (X)=1) - poy is neel light too. "Shrinky wedge of will

eg. non semilocally sizely antel space: (Example (12T)



a fractal copy of X

ing of ix Contains & T.

ASIde Eg (25 Crite n "Cn" has vader 4n, n=4,2,3... retractions on: X -> Cn collegues all other pts to ~ & Sujection for: The (Cn) = Z  $\Rightarrow$  get hom  $g: 2T_i(X) \rightarrow \widetilde{T} Z$ ( Conter diey agnet) Sujective: Construct loop Rom any sequence (kn) waps kn thus coward Ca in [1-1/a, 1-1/ht] cheel Continuous at the 1:

every nobed of to Castans all but Thistely may of the Ca V.

 $\rightarrow \pi_i(X)$  is nowable.

On the other had Tt, (VS')

is contably quested - contable.