Recall from last week:

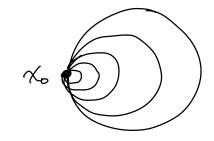
· Semilocaely simply connected:

YXEX, 3 noud U=x s.t.

 $i_*: \pi_*(U,x) \longrightarrow \pi_*(X,x)$ is thinal.

· If X has a surply and X, then X must be senilocally ruply and.

eg. non serilocaly sizely antel space: (Example (125)



now we will show $\pi_i(x)$ is in fact uncountable!

Cicle n "Cn" has vader /n, n=4,2,3... retractions on: X -> Cn collegues all other pts to

basepoint

~ of Sujection for: The (X) - The (Cn) = Z

 \Rightarrow get hom $g: \mathcal{H}_{i}(X) \rightarrow \widetilde{T} \mathcal{I} = (Conter diagramment)$

Swjective: Construct loop Rom any sequence (kn) waps to the ceward Ca in [1-1/a, 1-1/4] cheel Continuous at the 1:

> eury nobed of To Castans al but Shitely may of the Ca V.

 $\Rightarrow \pi_{i}(X)$ is incontrable.

On the other had $\pi_{i}(V)$:

is contably quested \Rightarrow contable.

Fact. CW cprs are even better - they are

Locally contractible

Wx, & U2x, 2 robby V=U] weally"

To contractible. Contractible. Contractible.

=> shrinking wedge of circles CANNOT be realized as a CW CPX!

ly. Observe that CX is senilocally s. c but not "locally sinply contd".

eg. path ented, not locally path cold,

senilocally simply cutal (achoely andrehure)

CX where X =

Construction Suppose X is path-and PC

Timbe on how common & locally path cutal CPC

this construction is
for universal black. & servi locally Singly croted.

· How to construct a simply cotal covering space X (the universal over):

 $\overline{X} = \{ [7] | \gamma \text{ is a path in } X \text{ starting at } x_0 \}$

- · mæles fense since [77 -> 7(1) is a weel-defined finet on by HLP. (assuming X exists already).
- Now had to define a topology on this specel:
 main chain: veed to have p: X→X
 be a covering map.

Observation

· let $\mathcal{U} = \{ path otdopens UCX s.t.$

 $\pi(u) \rightarrow \pi(x)$ is trivial $\}$

- · If V path crtd, V C U, U E U, SUSC then V E U too. Wary path crtd.
- · => U is a basis for the topology on X (for X LPC & SLSC). - there through this.

Given $U \in \mathcal{U}$, path C_{γ} in X starting at X and ending at a pt in U,

let $U_{\{\gamma\}} = \{ [\gamma \cdot \gamma] \mid \gamma \text{ is a path in } U \text{ with } \gamma(0) = \gamma(1) \}$ which

"lift" U = U(x)

- · Cheel: Ucrs depend my on the hopy class of y, indeed.
- · p injective once deflect η Rom

 γ(1) ~> x ∈ U (x=η(1))

 are all hope in X, since th(a) → π(x)
 is trivial.

So p: Up -> U wa bijuthon (of sett)

· Observe [7] & Uly = Ulys = Ulys.

 $\chi' = \chi \cdot \eta \implies \text{old of } M_{\gamma'} \circ \text{are } [\gamma \cdot \eta \cdot \mu] \in M_{(\gamma)}$ d. If $[\gamma \cdot \mu] \in M_{\gamma'}$ then $[\gamma \cdot \mu] = [\chi \cdot \eta \cdot \eta \cdot \mu] \in M_{\gamma'} \circ \sigma$ χ'

Thus the sets $\{U_{i\gamma}\}$ from about for the topology on X:

hiven Mays, Veris, Equis & Ulysan Veris,
then Ulys: Ulys & Veris = Veris.

- ⇒ If W∈ U is contained in UnV, and contains y"(1), then

 [y"] ∈ W(y") ⊂ U[y"] ∩ V(y").
- $p: M_{fy} \rightarrow M$ is a honor (already showed by just)

 (and here $p: X \rightarrow X$ is condinuous)
 - $P(V_{[\gamma']}) = V$ $P^{-1}: U \rightarrow U_{\gamma\gamma}$ cont.
 - $p^{-1}(V) \cap U_{[\gamma]} = V_{(\gamma)}$ $p: U_{[\gamma]} \to U$ cont. for $[\gamma'] \in U_{[\gamma]}$ with edpoint in V

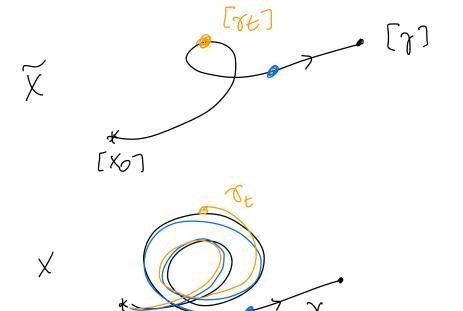
· IRTS & is amply connected.

O clear that X is perth outd.

let Jt = you (0, t) stationary on [t,17 (e y(t))

t +> Ert7 va parter Rom (xo)

to (y) while y.



The p* (a injective, to show $\pi_i(\tilde{X}, (\tilde{x}_i, (\tilde{X}_i, (\tilde{x}_i, \tilde{X}_i))) = 1$, let $p_*(\tilde{X}_i, (\tilde{X}_i, (\tilde{X}_i, (\tilde{X}_i, \tilde{X}_i))) = 1$. If the path $t \mapsto [y_t]$ that lifts y (stanking at $[x_i, (\tilde{X}_i, (\tilde{X}_i, \tilde{X}_i))]$ is a loop, then $[y_i] = [x_i]$.

But YI = [Y] = [Xo] => Y IS need before. Le vou see voly cer reed al 3 consletins: PC, LPC, SLSC

Next: mour throw: these condition are emple by a volust classification of covering space.

prop 1.37 Suppose X is PC, LPC, SLSC.

Then $\forall H \leq \pi(X, x_0)$, $\exists covering space <math>p: X_H \rightarrow X$ s.t. $p_*(\pi, (X_H, x_0)) = H$ for a suitably Chosen basepoint $x, + X_H$.

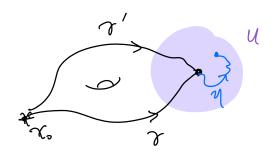
By construction, taking quotients of X.

• For $[r], [g'] \in X$, define an equal relation $[x] \sim [g']$ if g(i) = g'(i)

& [r. T'] EH.

(chell this is an epil relation.)

- · Defore XH = X/~
- · Note that if $\gamma(l) = \gamma'(l)$, then $[\gamma] \sim [\gamma'] \quad \text{iff} \quad [\gamma \cdot \eta] \sim [\gamma' \cdot \eta]$



=> If [B] & U[r] and [B'] & U[r'] are identified in XH ([B]~[B']) then in fact Ugg a dented with Ugg. \Rightarrow the natural map $X_H \rightarrow X$ (induced by [7) -> 74) is a covery space. · Basepoint: charge To €XH to be the eque clas of Cxo. Then $p_*(m(X_H, X_0)) = H:$ If a loop Y 11 X (band of xo) its lift of is a path (one) ~> [7]. so fira loop itt sysalles, ce it ly) tH. cue have existèree. IRTS congreness. To be clear, up to isomerfrom or covery spaces: diff An Esomorphin From $p:\widetilde{\chi}_{i} \to X$ \wedge $\rho:\widetilde{\chi}_{i} \to X$ is a homeo $f: X_1 \to X_2$ s.t. X, X $P_1 = P_2 f$ (Here f'is also an)

prop. 1.37 Suppose X is PC, CPC, SLSC. Two path-antel covering space $p: \widetilde{X}, \longrightarrow X$ and $p: \widetilde{X}_{L} \longrightarrow X$ Chazais basyous One isomera on ion $f: X, \rightarrow X_2$ taly X, - Fr iff pix (n, (x, x,)) = p2x (n, (x, xi)). Pf. (Class by defr. Jugo se $\rho_{i*}(\pi_i(\widetilde{X}_i,\widetilde{x}_i)) = \rho_{2*}(\pi_i(\widetilde{X}_2,\widetilde{x}_1))$ Pi (X, 1/X) Pi earts by leftily criterian. $\left(\widetilde{\chi}_{i},\widetilde{\chi}_{i}\right) \xrightarrow{\rho_{i}} (\chi,\chi_{\bullet})$ P2 | (X, , X,) P2 earts by lufthy crteur. $(\chi_{1},\chi_{2}) \xrightarrow{\rho_{2}} (\chi_{1},\chi_{0})$ By unque liking property, P. Pr = I, Prp; = I. (these left Pix baysons.)

=> Pi, Pa are invous Covering space ison.