Our main them:

Mon

thm 1.38 X PC, LPC, SCSC.

 $\mathbb{D} \quad \rho: (\widehat{X}, \widehat{\chi}) \to (X, \chi_0) \quad \longmapsto \quad \rho_* (\pi, (\widehat{X}, \chi_0))$

gives a bijectus blu

| basepoint - preservey | Subjueyo of |
from classes of |
path and covery grees | (X, xo) |

vote both are pour!

covering $\widetilde{\chi} \to \widetilde{\chi}$

Sulgroy. $P_*(\pi_i(\tilde{X}, \tilde{\chi})) \leq P_*(\pi_i(\tilde{X}, \tilde{\chi})).$

Delf basepours are ignoved, this correspondences induces a bijuston blu

(spares of conjugacy claims) (Spares of the contraction of the contrac

pf. a las statement

(dear (this piehre only for avimal coors). $(\widetilde{X}, \widetilde{X}, 1) \xrightarrow{\Xi} (\widetilde{X}, \widetilde{X}, 1)$

Po (X, xo)

for as basepoint charge

loon cares gue conjugato subgrage.

Let $\tilde{\gamma}$ be a path $\tilde{\chi}_0 \sim \tilde{\chi}_1$. $\tilde{\gamma}_0 = \tilde{\gamma}_0 = \tilde{\chi}_0 = \tilde{\chi}_0 = \tilde{\chi}_0 + \tilde{\chi}_0(\tilde{\chi}_0 = \tilde{\chi}_0)$.

(et Hi= pix(X, Xi) for i=0,1

of it a loop at $\tilde{\chi}_{o}$,
then $\tilde{\tilde{\chi}} \cdot \tilde{f} \cdot \tilde{\chi}$ is a loop at $\tilde{\chi}_{i}$. $\Rightarrow g^{-1}H_{o}g CH$,

· Simularly, gH,g-1 = H, -> H, = g-1 Hog.

Conjugate sut groyes sue ion conces

Sypse $H_1 = g^{-1}H_0g$ and we have $\hat{X} = X_{H_0}$. With basepoint $\bar{\chi}_0$.

Choose γ represently g, lift to γ of γ or γ . let $X_i = X$ and $\chi = \gamma(i)$.

Note that $(X_1, \widetilde{\chi}_1)$ of same covering P satisfies $P_X(X_1, \widetilde{\chi}_1) = H_1 = g^{-1}H_0g$ include.

Record Isomorphism of covering spaces $X_1 \xrightarrow{\subseteq} X_2$ we can use f to what f the cover $X_1 \cong X_2$.

det. For p: X -> X, the isome X -> X are called arek transformations.

Observe

- O $G(X) = \{i6oms X \rightarrow X\}$ form a surpo, identity, increase.
- (Say, the busyons χ_0)
- eg: $R \to S'$ $G(\tilde{\chi}) \cong \mathbb{Z}$ by vertical shift · note takes $\tilde{\chi}_0$ to a disperse $\in p^{-1}(\chi_0)$ is $\mathbb{Z} \subset R$.
- eg. S' -> S' n-dueted cover Z +> zn

Then $G(\tilde{X}) = \{ \text{votatus then appens } 2^{-1}h \} \cong T_{h2}$.

den. $p: \tilde{X} \to X$ is nomal (alla "rywlan")

if he each $x \in X$ and $\tilde{X}, \tilde{X}' \in p^{-1}(x)$ $\exists a \text{ dell transformation tabuly } \tilde{X} \mapsto \tilde{X}'.$ - maximal symmetry.

eg. $R \rightarrow S'$, $S' \rightarrow S'$ are arl womal.

eg. Consider om examples og covering spær for 5' 1'

eg. (1),(2),(5)-(8),(11) are normal (7) $G = \mathbb{Z}/2$ (2) $G = \mathbb{Z}/2 \times \mathbb{Z}/2$.

(1) a |p'(x)| = 2 nomal \Rightarrow G can only be $\approx 7/2$ Indeed take not about \Rightarrow by π as generation.

(3) a b a not home?

1p-1(x.) 1=3 so at most ne could have I de a transformations.

But we cannot move % to any other pt $\in p'(x_0)$ (no such homeo! if removed % would get two disjoint prens that book leave (X, X)) $G \cong I$ (4) Same with here, G=1.

Receive before vest time

def. (ed $S \subseteq G$. The nomalizer of S in G is $N(S) = \{g \in G \mid g S g^{-1} = S\}. \leq G$.

- (HEG is bornal (if N(H) =G.
- er H≤N(H). (nfort, H≥N(H).

Recall of some clarification.

Given $p:(\widetilde{X},\widetilde{K}) \longrightarrow (X,\chi_0)$ $p:\widetilde{X} \longrightarrow X$ s.f. $p(\widetilde{\chi_0}) = \chi_0$

· If X nomel thin I deel tran T SI

$$(X, X_0) \xrightarrow{\tau} (X, X_1)$$

$$P / P$$

$$(X, X_0)$$

note the same "p"

 $\Rightarrow \quad P*(\pi(\tilde{X},\tilde{\chi})) = P*(\pi(\hat{\chi},\hat{\chi})) \leq \pi(\chi,\chi_0)$:= H_ :-H,

- · If X not nomel, there might not be such T. let [7] E T, (X, x0) SIL ~(0) = % and ~(1) = 2. he showed then H = [7] Ho [7].
- (e) Could there be c s.s. 2, → 2, (2, +26) but $p: \widetilde{X} \to X$ not nomal?

see examples e end

Prop. 1.39

Let $p:(X,X_0) \longrightarrow (X,X_0)$ be a path-cutd covering space of a PC, LPC space X.

Let $H:=p_*(\pi(\widehat{X},\widehat{\pi})) \leq \pi(X,\infty).$

(a) p is normal iff $H \leq M_1(X_1, x_0)$ 2 \exists decl tar taking any $\approx m \approx \pi'$ where $x_1 \approx m' \in p^{-1}(x_1)$

(b) $G(\widehat{X}) \cong N(H)/H$ C swy of deel trans

Rodo. Hence:

 \mathbb{O} $G(X) \cong \pi_i(X, x_0)/H$ if X normal

O For the universal cover \widetilde{X} , $G(\widetilde{X}) \cong \pi_{\epsilon}(X)$.

pf.

(a) $H_1 = \{ \gamma \}^{-1} H [\gamma]$ so $\{ \gamma \} \in N(H)$ iff $H_1 = H$. iff $H_2 = H$. iff $H_3 = H$. If $\{ \gamma \} \in N(H)$ iff $\{ \gamma \} \in$

 $p: \widetilde{X} \to X$ is wormed $\Rightarrow \exists \ T \ \widetilde{X}_0 \to \widetilde{X}_1$

 \Leftrightarrow N(H)= π ,(X, χ _0) \Leftrightarrow H $\leq \pi$ (χ , χ _0).

(b) Dethe
$$\varphi: N(H) \rightarrow G(\tilde{X})$$

[8] \mapsto the e taking $\tilde{R}_0 \rightarrow \tilde{R}_1$

check: φ is a homomorphin. e
 φ is sujective (by pf , of (a))

beach = $\int [gg] | \tilde{g}(0) = \tilde{g}(1) \tilde{f} = p_{\ell}(\pi_{\ell}(\tilde{X}, \tilde{\chi}_0)) = H$.

Examples homel:

(7)

 $G \cong \mathbb{Z}_{\ell \ell R} = \langle \tau | \tau^{\ell+2} | \rangle$
 $T = Composition of following maps$

values "instead" "instead"

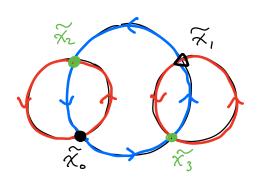
across "instead"

across

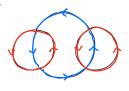
orange line

green square

(9)



but not to xz or xx



 $P_{*}(\pi_{1}(X, \pi_{0})) = (a^{2}, b^{4}, ab) ba^{2}b^{-1}(bab^{-2})$

flue do not life to Coops.

fw 07: more do a there.

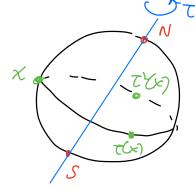
Group Actions (Review from 150A)

defe Given a group a and a space Y, a (group) action of Gan Y is a homomorphism

p: Gr → Homes (Y)

ie for each g, we have $g(g): Y \xrightarrow{\equiv} Y$ often untler g: Y -> Y for short.

eg. 7/32 = (7/73=1) (52 Whene votates by $2\pi/3$ about the axis through the N and S poles $\tau: S^2 \longrightarrow S^2$



· N, S are fixed points

· Mod of x is {x, t(x), t'(x)}.

det. An actor GRY is a covering space action it for each yEY there is a nound U=y s.t. g,(U) ng2(U2) ≠ & iff g,=g2. a defluent shorts are all digoint.

 $note: \iff g(u) \land u \neq d$ (iff g = cd.

eg. For $p: \overline{X} \to X$, $G(\overline{X}) \cap \widetilde{X}$ is a covering space action: the homeomorphic litts Wi of The an everly avered ushed U of x are disjoint. ex cheek ditails if inclear!

me Note that a overing space ach is free. -> I have confrere who of a manifold you wit pla marible lack.

duch. Given Gry,

- · orbit of yey = Gy = Egy) | ge G}
- · Y/G = orbit opene of the action hotal ie quotent by equi relate y~gay)

eg. For a homel covering spece $X \to X$, obst space of $G(X) \cap X$ is = X.

The whit of X = are left of T.

prop. 1.40 let G (Y be a coverity space action. (+)

(a) p: Y → Y(G U a normal coverity space

y → Gy

- (b) If Y is path-order, then a is the group of deal transfermation.
- (C) If Y is posth-ortel & locally posth and, then $G = \pi_i(Y/G)/p_*(\pi_i(Y))$ and basyout appropriates.

Pf. (Sketch)

(a) Every specie: indeed the U as in (4)

map to an every covered which p(U),

nomel by combined of taking

each U to g(U)

(6) Clear that G ⊂ grosp or dud trans. "Duck"

If f ∈ Dub, and y Is fay) by a

path (rince Y path crtd)

⇒ ∃ g (equiv clear of [7] = (por))

Sit, g(y) = f(y)

But I pathetod so rue they apur on one pt they are the same ded trans: g = f.

(c) b/c Y -> Y(a co normaliuse prop. 1.39 (6).

Ruch When Y is simply outed, locally path cutel

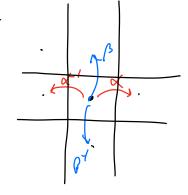
(ie a universal cover for any Y/a where

ary is a our years actin)

then M. (Y/a) = G by cushmeter.

EXAMPLES

D IR



 $\mathcal{L}(x,y) = (x+l,y)$ } tarslation $\beta(x,y) = (x,y+1)$ }

for ay pt take U3x to be back of radio <1.

Then clear that (x) holds.

G= ZXZ gen by d, p.

R/G & T2

M(T2) = TxZ indeed.

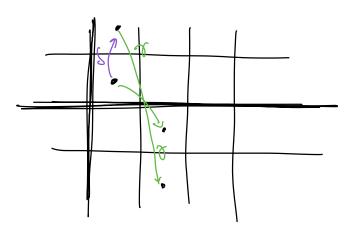
(0,1) 0

contains a ver of each orbit.

Use flus to see we jet a tons

2) Slyht modeficatin:

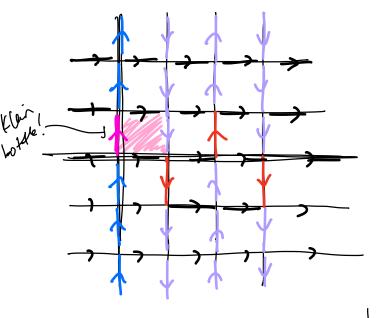
glide velleeln: a hjunety of



$$\gamma(x,y) = (x+1, -y)$$

$$\delta(x,y) = (x,y+1)$$

lets sie how sides of 19 waits are coleratived.



· coloned elger id ld. · black elger idld. · y generates abyung = Z

ξ _____

· \2(xy7= (x+2y)

ad <x>> = 2 is G.

· <\g^2, \langle > < G \tag{\tau} \tau \tag{\tau} \tag{

De there is a 2 therted cover of the bottle by T.

· On one had

 $\pi(K(uin) = \langle a_1b \mid abab^{-1} \rangle$

· on the other had also we that γ , then β , then γ' then β = id due from it $\beta \gamma'' \beta \gamma = 1$.