Comments from the instructor are written in italics.

1. Let X be a topological space and let $x, y \in X$. Define $e_x : * \to X$ be the function that sends the single point in * to $x \in X$; similarly define $e_y : * \to X$ to be the map that sends the point to y.

Prove that x and y are connected by a path if and only if $e_x \simeq e_y$.

Solution. (\Longrightarrow) Suppose there is a path $f(s): I \to X$ where f(0) = x, f(1) = y. Define a homotopy $g_t: * \to X$ by $g_t(*) = f(t)$. Since * is a 1-point space, each g_t is continuous in s. This homotopy is continuous in t because f(t) is continuous. We have $g_0 = e_x$ and $g_1 = e_y$, so $e_x \simeq e_y$.

 (\Leftarrow) If $g_t : * \to X$ is a homotopy with $g_0 = e_x$ and $g_1 = e_y$, then f(s) = g(s) gives a continuous path from f(0) = x to f(1) = y in X.

2. (a) Write down the definition of "deformation retraction."

Solution. Let (X,A) be a pair of spaces. We say a homotopy $f_t: X \to X$ is a deformation retraction of X onto A if $f_0 = id_X$, $f_1(X) = A$, and $f_t(a) = a$ for all $a \in A, t \in I$.

(b) Construct an explicit deformation retraction from $\mathbb{R}^n - \{0\}$ onto S^{n-1} .

Solution. Define a straight-line homotopy taking $x \in \mathbb{R}^n \setminus \{0\}$ to $\frac{x}{\|x\|} \in S^{n-1}$ by

$$f_t(x) = (1-t)x + t\frac{x}{\|x\|}.$$

Since $||x|| \neq 0$, this is continuous in x. This is linear and hence continuous in t. Also observe that the straight-line path of each point avoids the missing origin in \mathbb{R}^n .

3. Let X be the space obtained by identifying the four sides of a square $[0,1]^2$ as shown:

Observe that X is **not** homeomorphic to the torus or Klein bottle; to see this, consider neighborhoods of a point in the image of the boundary of the square.

1

Write down a CW structure for X, describing the attaching maps explicitly.

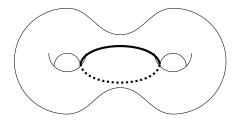
Solution. Let $X^0 = \{v\}$, and attach a single 1-cell e so that $X^1 \cong S^1$. View e as a path $e: I \to X^1$. To obtain X^2 , attach a single 2-cell F, identified with the filled square $I \times I$ via a homemorphism $D^2 \to I \times I$, using the piecewise attaching map $\phi_f: \partial F \to X^1$ where

$$\phi_F(x,0) = e(x)$$

 $\phi_F(1,y) = e(y)$
 $\phi_F(x,1) = e(1-x)$
 $\phi_F(0,y) = e(1-x)$.

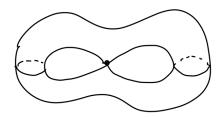
Thus ∂F wraps around a four times in the same direction.

4. Let X be the genus-2 surface shown below, and let A be the thick circular subspace shown. Prove that the quotient space X/A is homotopy equivalent to $S^1 \vee T^2$.

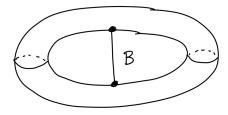


Recall that T^2 is the torus. You may mainly draw pictures in this proof. However, you must justify why each step is a homotopy equivalence.

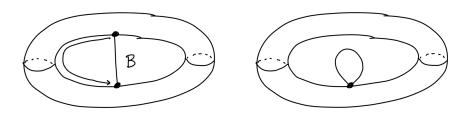
Solution. The quotient space X/A is obtained by crushing A to a point:



This is homotopy equivalent to the following space Y, because B is a contractible subspace of Y, and $X/A \cong Y/B$:



We can build Y by attaching an arc B to a torus using a different but homotopic attaching map:



This space is a wedge of a circle and a torus $S^1 \vee T^2$.