MAT 215A Fall 2025 Instructor: Melissa Zhang

Exam 1

By providing my signature below I acknowledge that I abide by the University's academic honesty policy. This is my work, and I did not get any help from anyone else:

Name	(sign):	Name (print):

Question	Points	Score
Q1	25	
Q2	25	
Q3	25	
Q4	25	
Total:	100	_

- This is a **closed-book** exam. You may not use the textbook, cheat sheets, notes, or any other outside material. No calculators, computers, phones, or any other electronics are allowed.
- You have **50 minutes** to complete this exam. If you are done early, you may leave after handing in your exam materials.
- Everyone must work on their own exam. Any suspicions of collaboration, copying, or otherwise violating the Student Code of Conduct will be forwarded to the Student Judicial Board.

Instructions

- 1. Use scratch paper to work out the problems.
- 2. Write down your solutions on the provided paper, clearly marking where your solutions for each question begins. Please write legibly and coherently; otherwise style points may be deducted.
- 3. Submit this exam cover sheet and your solutions to me, in order, so that I can paper clip them. Place your scratch paper in the pile next to me.

Comments from the instructor are written in italics.

1. Let X be a topological space and let $x, y \in X$. Define $e_x : * \to X$ be the function that sends the single point in * to $x \in X$; similarly define $e_y : * \to X$ to be the map that sends the point to y.

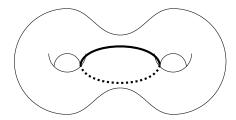
Prove that x and y are connected by a path if and only if $e_x \simeq e_y$.

- 2. (a) Write down the definition of "deformation retraction."
 - (b) Construct an explicit deformation retraction from $\mathbb{R}^n \{0\}$ onto S^{n-1} .
- 3. Let X be the space obtained by identifying the four sides of a square $[0,1]^2$ as shown:

Observe that X is **not** homeomorphic to the torus or Klein bottle; to see this, consider neighborhoods of a point in the image of the boundary of the square.

Write down a CW structure for X, describing the attaching maps explicitly.

4. Let X be the genus-2 surface shown below, and let A be the thick circular subspace shown. Prove that the quotient space X/A is homotopy equivalent to $S^1 \vee T^2$.



Recall that T^2 is the torus. You may mainly draw pictures in this proof. However, you must justify why each step is a homotopy equivalence.