MAT 215A Fall 2025 Instructor: Melissa Zhang

Exam 2

By providing my signature below I acknowledge that I abide by the University's academic honesty policy. This is my work, and I did not get any help from anyone else:

Name	(sign).	Name (print):
TIGHT	(81511).	Traine (print).

Question	Points	Score
Q1	30	
Q2	30	
Q3	40	
Total:	100	

- This is a **closed-book** exam. You may not use the textbook, cheat sheets, notes, or any other outside material. No calculators, computers, phones, or any other electronics are allowed.
- You have **50 minutes** to complete this exam. If you are done early, you may leave after handing in your exam materials.
- Everyone must work on their own exam. Any suspicions of collaboration, copying, or otherwise violating the Student Code of Conduct will be forwarded to the Student Judicial Board.

Instructions

- 1. Use the scratch paper provided to work out the problems. You may submit your scratch paper for recycling at the end of the exam.
- 2. Write down your solutions in the exam packet. Please write legibly and coherently; otherwise style points may be deducted.

1. Let X be the space obtained by identifying the three sides of an equilateral triangle as shown:

Compute $\pi_1(X)$.

Be careful. No points will be given for computing π_1 of the wrong space.

2. For a covering space $p:\widetilde{X}\to X$ and a subspace $A\subset X$, let $\widetilde{A}:=p^{-1}(A)$. Show that the restriction $p|_{\widetilde{A}}:\widetilde{A}\to A$ is a covering space.

3. Find two non-homeomorphic 2-sheeted, path-connected covering spaces of $X = S^1 \vee \mathbb{R}P^2$. Prove that the covers are indeed not homeomorphic.

You do not need to explicitly prove your covers are 2-sheeted; just make sure to clearly indicate how your covering map sends pieces of \widetilde{X} to pieces of X, as we did in class when we studied covers of $S^1 \vee S^1$.

Here is a cartoon of X, to possibly help you depict $\mathbb{R}P^2$:

