MAT 215A Take-Home Final Exam Solutions

Note: All covering spaces are surjective maps.

- 1. Recall that the join X * Y of two spaces X and Y is defined as $X \times Y \times I/\sim$ where $(x, y_1, 0) \sim (x, y_2, 0)$ and $(x_1, y, 1) \sim (x_2, y, 1)$. Suppose that X and Y are path-connected and nonempty.
 - (a) Prove that X * Y is path-connected.

Solution. We can parametrize points in X * Y by picking preimages in $X \times Y \times I$. Let (x, y, s) and (x', y', s') represent two points p, p' in X * Y, respectively.

Because X, Y, I are path-connected, there exist paths

- γ_X in X from $x \rightsquigarrow x'$
- γ_Y from $y \leadsto y'$
- γ_I from s to s' (e.g. the straight-line path).

These induce paths in $X \times Y \times I$

- $\alpha_X(t) = (\gamma_X(t), y, s)$ from $(x, y, s) \leadsto (x', y, s)$
- $\alpha_Y(t) = (x', \gamma_Y(t), s)$ from $(x', y, s) \leadsto (x', y', s)$
- $\alpha_I(t) = (x', y', \gamma_I(t))$ from $(x', y', s) \leadsto (x', y', s')$.

These project to paths $\beta_X, \beta_Y, \beta_I$ in X * Y.

Then $\beta_X \bullet \beta_Y \bullet \beta_I$ is a path in X * Y from $p \leadsto p'$. Since every pair of points can be connected by a path, X * Y is path-connected.

(b) Prove that X * Y is simply-connected.

Hint: Use the Seifert-van Kampen theorem.

SOLUTION.

Let A be the image of $X \times Y \times \{0.5\}$ in X * Y. Since X and Y are path-connected, $A \cong X \times Y$ is also path-connected. (As in part (a), we may take a composition of paths in the X and Y components to move from one point to another.)

Let U be the image of $X \times Y \times [0, 0.6)$ and V be the image of $X \times Y \times (0.4, 1]$. Together, these cover X * Y.

Then U, V are open subsets of X*Y, where $U \cap V$ is the neighborhood (the homeomorphic image of) $X \times Y \times (0.4, 0.6)$ of A, which deformation retracts onto A, and is therefore path-connected.

Observe that U deformation retracts onto X, via the homotopy $f_t(x, y, s) = (x, y, (1 - t)s)$. Similarly, V deformation retracts onto Y, via the homotopy $g_t(x, y, s) = (x, y, 1 - (1 - t)s)$.

Let $p_0 = (x_0, y_0, 0.5) \in A$ be a basepoint. Since $\pi_1(A, p_0) \cong \pi_1(X \times Y, p_0) \cong \pi_1(X, x_0) \times \pi_1(X, y_0)$, in order to use the Seifert–van Kampen theorem, it suffices to consider loops γ_X in $X \times \{y_0\} \subset A$ and γ_Y in $\{x_0\} \times Y \subset A$.

A nullhomotopy of γ_X can be constructed as follows. For $s \in [0.5, 1]$, let α_s be the path that travels from $(x_0, y_0, 0.5)$ to (x_0, y_0, s) in unit time, and let γ_X^s be the copy of γ_X in the slice $X \times Y \times \{s\}$ in X * Y (where at s = 1, we only have a copy of Y). After reparametrizing, this is a homotopy from $\gamma_X \sim \alpha_1 \cdot \bar{\alpha}_1$, since γ_X^1 is a constant map. Compose this homotopy with the homotopy $\alpha_1 \bullet \bar{\alpha}_1 \simeq c_{p_0}$, the constant path at the basepoint.

We can similarly produce a nullhomotopy $\gamma_Y \simeq c_{p_0}$. Hence in the quotient of $\pi_1(U, p_0) * \pi_1(V, p_0)$ in the Seifert–van Kampen theorem, any element in $\pi_1(U, p_0) \cong \pi_1(X, x_0)$ or in $\pi_1(V, p_0) \cong \pi_1(Y, y_0)$ is identified with $[c_0]$. Hence $\pi_1(X * Y, p_0) \cong 1$.

2. Let A be a path-connected subspace of a space X, with $x_0 \in A$. Show that the inclusion map $i: A \hookrightarrow X$ induces a surjective map $\pi_1(A, x_0) \to \pi_1(X, x_0)$ if and only if any path with endpoints in A is homotopic (rel endpoints) to a path in A.

Hint: If $\gamma \simeq \gamma'$ (rel endpoints), then $\alpha \cdot \gamma \cdot \beta \simeq \alpha \cdot \gamma' \cdot \beta$.

SOLUTION.

(The symbol \simeq always means 'homotopic rel endpoints' in the solution below.)

The backwards implication is immediate: any loop γ representing a class in $\pi_1(X, x_0)$ can be homotoped to a path γ' in A, so $i([\gamma']) = [\gamma]$, so i_* is surjective.

For the forward implication, let γ be a path with $\gamma(i) = a_i \in A$, i = 0, 1. Since A is path-connected, there exist paths α_i in A from $x_0 \in A$ to a_i , i = 0, 1. Let γ' be the path $\bar{\alpha}_0 \bullet (\alpha_0 \bullet \gamma \bullet \bar{\alpha}_1) \bullet \alpha_1$. Observe that (1) $\gamma'(i) = a_i$ for i = 0, 1, and (2) $\gamma' \simeq \gamma$.

Since i_* is surjective, there exists some $[\beta] \in \pi_1(A, x_0)$ such that $i_*([\beta]) = [\alpha_0 \bullet \gamma \bullet \bar{\alpha}_1]$, where β is a loop completely contained in A. Therefore $\gamma \simeq \gamma' \simeq \bar{\alpha}_0 \bullet \beta \bullet \alpha_1$, a path entirely contained in A.

3. Suppose X is a path-connected space with universal covering space \tilde{X} . Prove that if \tilde{X} is compact, then $\pi_1(X)$ is finite.

SOLUTION.

In this problem, students are allowed to assume that X is also locally path-connected.

Let $p: \tilde{X} \to X$ be the (surjective) covering map from the universal cover.

We claim that X is also compact. Let \mathcal{C} be a cover of X consisting of evenly covered neighborhoods. Let $\tilde{\mathcal{C}}$ be the cover of \tilde{X} consisting of homeomorphic preimages of $U \in \mathcal{C}$ under the covering map p. Since \tilde{X} is compact, $\tilde{\mathcal{C}}$ admits a finite subcover $\tilde{\mathcal{C}}'$. Then $\mathcal{C}' := \{p(V) \mid V \in \tilde{\mathcal{C}}'\} \subset \mathcal{C}$ is a finite subcover of X.

Now choose a cover C of X consisting of evenly covered neighborhoods such that exactly one open set $U \in C$ contains x_0 . Let \tilde{C} the induced cover of \tilde{X} as described in the previous paragraph. Let \tilde{C}' be finite subcover of \tilde{C} . Since lifts of U_0 are disjoint and also x_0 is uniquely

covered by U_0 in C, every lift \tilde{x}_0 of x_0 is contained in a unique $V \in \tilde{C}'$. Since $|C'| < \infty$, there are only finitely many lifts \tilde{x}_0 .

Recall that $\pi_1(X, x_0)$ acts as deck transformations on \tilde{X} . Namely, given a chosen $\tilde{x}_0 \in \tilde{X}$ lifting x_0 , the elements $[\gamma] \in \pi_1(X, x_0)$ are in bijection with the lifts $\tilde{x}'_0 \in p^{-1}(x_0)$, via $[\gamma] \mapsto \tilde{\gamma}(1)$, where $\tilde{\gamma}$ is the unique lift of γ starting at x_0 .

Hence
$$|\pi_1(X, x_0)| = |p^{-1}(\tilde{x}_0)| < \infty$$
.

- 4. Let X be a CW complex.
 - (a) Let \tilde{X} be a k-sheeted cover of X. Show that \tilde{X} also has a CW structure, and that $\chi(\tilde{X}) = k\chi(X)$, where χ denotes Euler characteristic.

SOLUTION.

Suppose we have a CW structure on X consisting of cells $\{e_{\alpha}^n\}_{\alpha\in A}$, where e_{α}^n has dimension n and A is some indexing set.

Let $p: \tilde{X} \to X$ be a k-sheeted covering. A CW structure on \tilde{X} can be described as follows. Note that π_1 of any D^n is trivial, so the lifting criterion is satisfied.

- The 0-cells of \tilde{X} are the points that are preimages of the 0-cells of X.
- The 1-cells are given by (all) the lifts of the maps $\gamma: D^1 = I \to X$ defining the 1-cells of X; clearly the endpoints $\tilde{\gamma}(0), \tilde{\gamma}(1)$ are 0-cells of \tilde{X} , since $\gamma(0), \gamma(1) \in X^0$.
- Similarly, the *n*-cells are given by all the lifts of the maps $f: D^n \to X$ defining the *n*-cells of X, and $\tilde{f}(\partial D^n) \subset \tilde{X}^{n-1}$ because $f(\partial D^n) \subset X^{n-1}$.

By the unique lifting property, distinct lifts of $e^n_\alpha:D^n\to X^n$ have disjoint images. Since every point in \tilde{X} projects via p to some cell in X, the above is a CW structure on \tilde{X} . For each cell e^n_α , pick a point in p_α the interior. (For example, viewing e^n_α as a map

For each cell e_{α}^{n} , pick a point in p_{α} the interior. (For example, viewing e_{α}^{n} as a map $D^{n} \to X$, we may choose the image of the origin.) Since p is k-sheeted, there are k lifts of p_{α} , so there are exactly k cells in \tilde{X} that lift e_{α}^{n} . Since

$$\chi(X) = \sum_{n \ge 0} (-1)^n \#(n\text{-cells in } X),$$

we have

$$\chi(\tilde{X}) = \sum_{n \ge 0} (-1)^n \#(n\text{-cells in } \tilde{X}) = \sum_{n \ge 0} (-1)^n k \cdot \#(n\text{-cells in } X) = k\chi(X)$$

(when $\chi(X)$ is defined).

(b) Show that if $f: \mathbb{RP}^{2n} \to X$ $(n \ge 1)$ is a covering map, then f is a homeomorphism.

SOLUTION. Since \mathbb{RP}^{2n} has one cell in each of its 2n+1 dimensions, $\chi(\mathbb{RP}^{2n})=1$. Since \mathbb{RP}^{2n} is compact (and path-connected), by Question 3 we know that $\pi_1(X)$ (no need to specify basepoint) is finite, so the maximum number of sheets a cover can have is $|\pi_1(X)| < \infty$. By part (a), $1 = \chi(\mathbb{RP}^{2n}) = k\chi(X)$ for some k, and since $\chi(X) \in \mathbb{Z}$ and $k \in \mathbb{Z}_{\geq 0}$, we must have k = 1. Hence f is a 1-sheeted covering space, i.e. a homeomorphism.