MAT 215B HW05

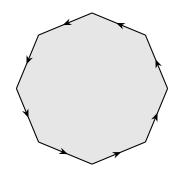
Melissa Zhang

Due Friday, 5/23/25 at 9:00 pm on Gradescope

It may be helpful to give notation to duals. For example, if v is the vertex in the simplicial structure for \mathbb{RP}^2 , then $v^* \in \text{Hom}(\Delta_0(X), \mathbb{Z})$ denotes the dual: $v^*(kv) = k$, where kv means k copies of the vertex v.

Exercise 1

Consider the space X obtained by identifying all eight sides of an octagon as shown:



- (a) Compute the cellular homology of X.
- (b) Compute the cellular cohomology of X.

Exercise 2

- (a) Compute the cellular cohomology groups of \mathbb{RP}^2 with \mathbb{Z} and $\mathbb{Z}/2\mathbb{Z}$ coefficients.
- (b) Do the same for the Klein bottle.

Exercise 3

- \mathbb{RP}^n , or *n*-dimensional real projective space, is obtained by quotienting S^n by the antipodal map. Recall that the antipodal map has degree ± 1 , depending on the dimension of the sphere.
 - (a) Recall that there is a cell decomposition for S^n $(n \ge 0)$ consisting of two cells in each dimension.

By taking quotient of this cell decomposition, describe a cell decomposition for \mathbb{RP}^n , and write down the cellular chain complex over \mathbb{Z} coefficients.

Remember to describe the degree of the attaching maps! In effect, S^n is built inductively by adding cells onto lower dimensional spheres S^i . Your antipodal map on S^i should have degree $(-1)^{i+1}$.

(b) Compute the homology of \mathbb{RP}^n over \mathbb{Z} and over \mathbb{F}_2 .