

Melissa Zhang

MAT 150A

Don't forget to pick up a participation slip!

1/11

The cosets of a normal subgroup form a group.

Quotient Groups: The Underlying Set

- The set of cosets of $N \leq G$ is denoted $\overline{G} = G/N$.
 - Why am I not writing "left cosets" or "right cosets" here?
- The coset containing $a \in G$, may be written as

aN, ā, or [a].

- Recall that the latter two notations are fairly standard for the notion of equivalence class.
- There is a canonical (i.e. obvious) map (of sets, currently)

$$\pi: G \to \overline{G}, \qquad g \mapsto \overline{g}.$$

• Clearly, π is a surjective map, and $\pi^{-1}(\overline{1}) = N$.

Additive example: $(\mathbb{Z}/5\mathbb{Z}, +)$

 $G = \mathbb{Z}$ is an abelian group, so $N = 5\mathbb{Z} \leq \mathbb{Z}$. The set of cosets of N are $\overline{G} = G/N = \{\overline{0}, \overline{1}, \overline{2}, \overline{3}, \overline{4}\} = \mathbb{Z}/5\mathbb{Z}$.

• $\bar{3} = 3 + 5\mathbb{Z} = [3] \in \bar{G}$

Multiplicative example: Product groups

Let $G \cong H \times K$, where $H, K \leq G$. Recall that this means $H \times K \to HK = G$ is an isomorphism.

Then $K \trianglelefteq G$, and the set of cosets of K are

 $\{hK \mid h \in H\}$

so the quotient group is a copy of H.

Under the isomorphism $G \to H \times K$, the coset hK (for a fixed h) corresponds to the set of pairs $\{(h, k) \mid k \in K\}$.

Participation Slip

- What would be the most obvious multiplication operation for \bar{G} ?
- **2** Why is it therefore necessary for N to be normal in G for \overline{G} to form a group?

1
$$[a][b] = [ab]$$
, i.e. $(aN)(bN) = (ab)N$, i.e. $\overline{a}\overline{b} = \overline{ab}$

2 aNbN = a(bN)N = abN This is Lemma 2.12.5 in the text.

Aside

Do you understand the meaning of the words **necessary** and **sufficient** in mathematics?

Theorem 2.12.2

Let $N \trianglelefteq G$, and let \overline{G} denote the set of cosets of N in G.

- There is a law of composition on \overline{G} that makes it into a group.
- Using that law of composition, the canonical map $\pi: G \to \overline{G}$ defined by $g \mapsto \overline{g}$ is a surjective homomorphism whose kernel is N.

To prove:

- [a][b] = [ab] makes \overline{G} into a group
- 2 π is a surjective homomorphism

• ker
$$\pi = N$$

Quotient Group Structure

- [a][b] = [ab] makes \overline{G} into a group
 - Associativity is easily verified:
 - $(\bar{a}\bar{b})\bar{c} = \overline{ab}\bar{c} = \overline{abc} = \bar{a}\overline{bc} = \bar{a}(\bar{b}\bar{c})$
 - Also easily verified: [1] is the identity, and $[a]^{-1} = [a^{-1}]$

2 π is a surjective homomorphism

• π is surjective as a set map; it remains to check $\pi(a)\pi(b) = \pi(ab)$; but this is precisely the definition of multiplication in \overline{G}

3 ker
$$\pi = N$$

•
$$\pi^{-1}([1]) = N$$
 indeed

 \bar{G} was defined so that $\pi: G \to \bar{G}$ would be a surjective homomorphism.

First Isomorphism Theorem

First Isomorphism Theorem

Let $\varphi : G \to G'$ be a <u>surjective</u> homomorphism with kernel $N \leq G$. Then φ **factors through** G/N, and there is a <u>unique</u> isomorphism $\overline{\varphi} : G/N \to G'$ such that $\varphi = \overline{\varphi} \circ \pi$.

Exercise: Prove that $\bar{\varphi}$ is indeed determined by π and φ , and therefore must be unique.

First Isomorphism Theorem

First Isomorphism Theorem

Let $\varphi : G \to G'$ be a surjective homomorphism with kernel $N \trianglelefteq G$. Then φ factors through G/N, and there is a unique isomorphism $\overline{\varphi} : G/N \to G'$ such that $\varphi = \overline{\varphi} \circ \pi$.

Proof. Let $\bar{\varphi}(\bar{x}) = \varphi(x)$.

• Check that $\bar{\varphi}$ is well-defined.

• Check that $\bar{\varphi}$ is a homomorphism.

Then $\bar{\varphi} \circ \pi(x) = \varphi(x)$ by construction.

First Isomorphism Theorem

First Isomorphism Theorem

Let $\varphi : G \to G'$ be a surjective homomorphism with kernel $N \trianglelefteq G$. Then φ factors through G/N, and there is a unique isomorphism $\overline{\varphi} : G/N \to G'$ such that $\varphi = \overline{\varphi} \circ \pi$.

Corollary

Let $\varphi: G \to G'$ be any (not necessarily surjective) group homomorphism. Then

 $G/\ker \varphi \cong \operatorname{im} \varphi.$

If $\varphi: \mathcal{G} \to \mathcal{G}'$ is surjective, then $\mathcal{G}' \cong \mathcal{G}/\ker \varphi$.

- What is $\operatorname{GL}_n(\mathbb{R})/\operatorname{SL}_n(\mathbb{R})$ isomorphic to?
 - A: Consider det : GL_n(ℝ) → ℝ[×]. It's surjective. Since ker(det) = SL_n(ℝ), the quotient group is isomorphic to ℝ[×].
- What is $\operatorname{GL}_n(\mathbb{C})/\operatorname{SL}_n(\mathbb{C})$ isomorphic to?
 - A: The homomorphism det : GL_n(ℂ) → ℂ[×] is surjective, with kernel SL_n(ℂ). Therefore GL_n(ℂ)/SL_n(ℂ) ≅ ℂ[×].
- Identify the quotient group \mathbb{C}^{\times}/S^1 .
 - Recall that the multiplicative group of complex numbers \mathbb{C}^{\times} contains the circle group S^1 consisting of all the complex numbers of modulus 1.
 - A: Consider the absolute value map $|\cdot|: \mathbb{C}^{\times} \to \mathbb{R}_{>0}^{\times}$. It's surjective. Then $S^1 = \ker(|\cdot|)$. So $\mathbb{C}^{\times}/S^1 \cong \mathbb{R}_{>0}^{\times}$.