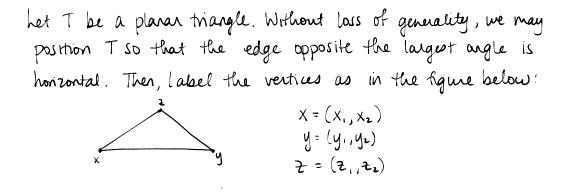
MAT 108: Mock Final Solutions

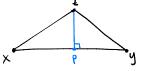
- 1. Assume the following two *axioms*:
 - A1 The area of a planar rectangle with sides $a, b \in \mathbb{R}$ is the product $a \cdot b$.
 - A2 The area of two planar figures which intersect at most along edges is the sum of areas of each of the planar figures.

Use Axioms 1 and 2 to deduce that the area of the triangle with height $h \in \mathbb{R}$ and base $b \in \mathbb{R}$ equals $(b \cdot h)/2$.

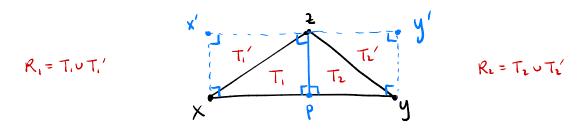


Since the largest angle is at z, the angles at x and y must be acute; otherwise, if one of x, y is obtuse (and thus z is obtuse as well), then the sum of the angles would be greated than $90^{\circ} + 90^{\circ} = 180^{\circ}$.

Then the vertical like through z will intersect the edge Xy at some point p:



Define the points $x' = (x_0, z_i)$ and $y' = (y_0, z_i)$:



Now observe that the following pairs of triangles have the same shape and size, and thus area as well:

■ T, and T,' ② T2 and T2'.

(This is because T: and Ti' are similar right triangles that share their longest side, the hypotenuse.)

het
$$A(\cdot)$$
 denote the area function on closed shapes.
By Axiom 2, $A(R_1) = A(T_1) + A(T_1') = 2 \cdot A(T_1)$
and $A(R_2) = A(T_2) + A(T_2') = 2 \cdot A(T_1)$.

The base of T is \overline{xy} , and has length b; the height of T is h, the length of \overline{pz} . The vectangle R, uRz also has base length b and height h. By Axiom 1, $A(R, uRz) = b \cdot h$. By Axiom 2, A(R, uRz) = A(R,) + A(Rz). Therefore $b \cdot h = A(R, uRz) = A(R,) + A(Rz) = 2A(T_1) + 2A(T_2)$, Since T = T, uTz (intersecting only along \overline{pz}), by Axiom 2, $A(T) = A(T_1) + A(T_2) = \pm A(R, uRz) = \pm bh$.

2. Prove that for $n \ge 8$,

$$3n^{2} + 3n + 1 < 2^{n}.$$
We will prove the statement by induction.
(Base case) in the base case, n=8 We verify that
 $3n^{2} + 3n + 1 = 3 \cdot b4 + 3 \cdot 8 + 1 = 217 < 25b = 2^{8}.$
(Induction Step) Now assume that for some n>8,
 $3n^{2} + 3n + 1 < 2^{n}.$
We will show that $3(n+1)^{2} + 3(n+1) + 1 < 2^{n+1}.$
Expand the (uft-hand side:
 $3(n+1)^{2} + 3(n+1) + 1$
 $= 3(n^{2} + 2n + 1) + 3n + 3 + 1$
 $= 3n^{2} + 6n + 3 + 3n + 3 + 1$
 $= (3n^{2} + 3n + 1) + (6n + 6).$
By the induction hypothesis, $3n^{2} + 3n + 1 < 2^{n}.$ Since $2^{n+1} = 2^{n} + 2^{n}$,
it remains to show that $6n+6 < 2^{n}$, or equivalently, $3n+3 < 2^{n-1}$,
for all $n \ge 8.$
Claim For $n \ge 8$, $6n+6 < 2^{n}$
Pf. In the base case, $n = 8:$
 $6\cdot 8 + 6 = 54 < 25b = 2^{8}.$
Assume that for some $n \ge 8$, $6n+6 < 2^{n}$.

Then
$$6(n+1)+6 = (6n+6) + 6$$
.
By the induction hypothesis,
 $6(n+1)+6 = (6n+6)+6 < 2^n + 6$.

Since
$$n78$$
, $6<2^{n}$, so
 $2^{n}+6 < 2^{n}+2^{n}=2^{n+1}$

In summary,

$$3(n+1)^{2}+3(n+1)+1 = (3n^{2}+3n+1)+(6n+6) < 2^{n}+2^{n} = 2^{n+1}$$

by the induction hypothesis and Claim.

3. Show that there are no positive integer solutions $a, b \in \mathbb{N}$ to the equation $a^2 - b^2 = 10$.

Suppose, by way of contradiction, that there exist a, b \in IN
such that
$$a^2-b^2=10$$
.
Then $a^2=b^2+10$, so b^2+10 is a perfect square.
Since $b^2+10 > b^2$, there must be some $c \in \mathbb{N}$ such that
 $(b+c)^2 = b^2+10$.
Expanding the LHS, we have
 $(b+c)^2 = b^2+2bc+c^2 = b^2+10$.
Therefore $2bc+c^2=10$.
Since $2bc+c^2=10$.
Since $2bc \in \mathbb{N}$, $c^2 < 2bc+c^2=10$, so $c \in \{1,2,3\}$.
But since $2bc$ and 10 are both even, $c^2 = 10-2bc$ must
also be even, and so $c=2$.
Then $2bc+c^2=2b\cdot 2+2^2=4b+4=10$, so $4b=6$.
Then $b=b/4 \notin \mathbb{N}$, so we have a contradiction.

4. Consider the following recursively defined sequence:

$$x_1 = 1,$$
 $x_{n+1} = \frac{x_n}{2} + 1$ $\forall n \in \mathbb{N}.$

(a) Show that (x_n) is increasing and bounded above.

(b) Prove that (x_n) converges and find its limit.

(a) We herd to show that for all
$$n \ge 1$$
,
 $x_{n+1} = \frac{x_n}{a} + 1 \ge x_n$, it that $\frac{x_n}{2} + 1 - x_n \ge 0$.
Since $\frac{x_n}{2} + 1 - x_n = \left| -\frac{x_n}{2} \right|$, it suffices to show that
 $\forall n \ge 1$, $x_n < 2$; we show this by induction:
In the base case, $n=1$, and indeed $x_1 = 1 < 2$.
Suppose that for some n , $x_n < 2$. Then
 $x_{n+1} = \frac{x_n}{2} + 1 < |+| < 2$.

Therefore (xn) is increasing, and bounded above by 2

(b) The sequence is also bounded below by x.=1, since 'H's increasing. So (Xn) is bounded and monotone, so by the Monotone Convergence Theorem, (Xn) converges.

To find the actual limit, we will find an explicit formula for X_n . <u>Claim</u> $X_n = \frac{2^n - 1}{2^{n-1}}$ pf. In the base case, n=1, and indeed $X_i = 1 = \frac{2^i - 1}{2^n}$ Assume that for some $n \ge 1$, $X_n = \frac{2^n - 1}{2^{n-1}}$ Then $X_{n+1} = \frac{X_n}{2} + 1 = \frac{2^n - 1}{2^n} + 1 = \frac{2^n - 1 + 2^n}{2^n} = \frac{2^{n+1} - 1}{2^{(n+1)-1}}$ We now show that $\lim_{N \to \infty} \chi_n = \lim_{N \to \infty} \frac{2^n - 1}{2^{n-1}} = d$. Observe that $\frac{2^n - 1}{2^{n-1}} = \frac{2^n}{2^{n-1}} - \frac{1}{2^{n-1}} = 2 - \frac{1}{2^{n-1}}$. Let $\varepsilon 70$. Choose $N \in \mathbb{N}$ such that $2^{N-1} > \frac{1}{\varepsilon}$. Then for all $N \ge N$,

$$|2-X_{n}| = |2-(2-\frac{1}{2^{n}})| = \frac{1}{2^{n}} < \frac{1}{2^{n-1}} < \varepsilon.$$

5. Consider the set of black and white colorings of the numbers in the interval $[0,1] \subset \mathbb{R}$:

$$C := \{c : [0,1] \to \{\text{black}, \text{white}\}\}.$$

Show that $\operatorname{card} C > \operatorname{card} \mathbb{R}$. Note the strict inequality.

We first durine a bijection between C and
$$\mathcal{P}([0,1])$$
.
Define $f: \mathbb{C} \longrightarrow \mathcal{P}([0,1])$ by $\mathbb{C} \mapsto \mathbb{X}_{\mathbb{C}}$,
Where $\mathbb{X}_{\mathbb{C}} = \{ \mathbb{P} \in [0,1] : \mathbb{C}(p) = \mathbb{D} \mid \mathbb{aek} \mathbb{X} \}$.
We can also define an inverse: let $g: \mathcal{P}([0,1]) \longrightarrow \mathbb{C}$ be defined
by $\mathbb{X} \subset [0,1] \mapsto \mathbb{C}_{\mathbb{X}}$, where for $\mathbb{P} \in [0,1]$,
 $\mathbb{C}_{\mathbb{X}}(p) = \mathbb{D} \mid \mathbb{aek}$ iff $\mathbb{P} \in \mathbb{X}$.
Since f has an inverse, f is a bijection, so
 $\mathbb{Card}(\mathbb{C}) = \mathbb{Card}(\mathcal{P}([0,1]))$.
Since $(0,1) \subset [0,1]$, $\mathbb{Card}([0,1]) \leq \mathbb{Card}([0,1])$.
By $\mathbb{P} \subseteq 9$, $\mathbb{Card}(\mathbb{R}) = \mathbb{Card}((-\mathbb{F}, \mathbb{F})) = \mathbb{Card}((0,1))$.
Thuse $\mathbb{Card}(\mathbb{R}) \leq \mathbb{Card}([0,1]) < \mathbb{Card}([0,1])$,
where the strictinequality convertion the theorem that
for any-set A , $\mathbb{Card} A < \mathbb{Card} \mathbb{P}(A)$.