MAT 108: Mock Final Solutions

1. Assume the following two axioms:

A1 The area of a planar rectangle with sides $a, b \in \mathbb{R}$ is the product $a \cdot b$.

A2 The area of two planar figures which intersect at most along edges is the sum of areas of each of the planar figures.

Use Axioms 1 and 2 to deduce that the area of the triangle with height $h \in \mathbb{R}$ and base $b \in \mathbb{R}$ equals $(b \cdot h)/2$.

het T be a planar triangle. Without loss of generality, we may position T so that the edge opposite the largest angle is horizontal. Then, label the vertices as in the figure below:

$$X = (X_1, X_2)$$

 $Y = (Y_1, Y_2)$
 $Z = (Z_1, Z_2)$

Since the largest argle is at z, the argles at x and y must be acute; otherwise, if one of x,y is obtuse (and thus z is obtuse as well), then the sum of the argles would be greater than $90^{\circ} + 90^{\circ} = 180^{\circ}$.

Then the vertical like through z will intersect the edge \overline{xy} at some point p:

Define the points $x'=(x_0,z_1)$ and $y'=(y_0,z_1)$:

Now observe that the following pairs of triangles have the same shape and size, and thus area as well:

(This is because T: and Ti' are similar right triangles that share their longest side, the hypotenuse.)

het $A(\cdot)$ denote the area function on closed shapes.

By Axiom 2,
$$A(R_1) = A(T_1) + A(T_1') = 2 \cdot A(T_1)$$

and $A(R_2) = A(T_2) + A(T_2') = 2 \cdot A(T_1)$

The base of T is \overline{xy} , and has length b; the height of T is h, the length of \overline{pz} .

The vectangle R. u.R. also has base length b and height h.

By Axim 1, A(R, UR2) = b.h.

By Axim 2, A(R, UR2) = A(R,)+A(R2)

Therefore b.h = A(R, UR) = A(R) + A(R) = 2A(T) + 2A(T),

Since $T = T_1 \cup T_2$ (intersecting only along \overline{pz}), by Axim 2, $A(T) = A(T_1) + A(T_2) = \pm A(R_1 \cup R_2) = \pm bh$.

2. Prove that for $n \geq 8$,

$$3n^2 + 3n + 1 < 2^n.$$

We will prove the statement by induction.

(Base case) In the base case, n=8 We verify that $3n^2+3n+1=3.64+3.8+1=217 < 256=28$

(Induction Step) Now assume that for some n > 8, $3n^2 + 3n + 1 < 2^n$.

We will show that $3(n+1)^2 + 3(n+1) + 1 < 2^{n+1}$

Expand the left-hand side:

$$3(n+1)^2+3(n+1)+1$$

$$= 3(n^2 + 2n + 1) + 3n + 3 + 1$$

$$=3n^2+6n+3+3n+3+1$$

$$=(3n^2+3n+1)+(6n+6)$$

By the induction hypothesis, $3n^2+3n+1 < 2^n$. Since $2^{n+1} = 2^n + 2^n$, it remains to show that $6n+6 < 2^n$, or equivalently, $3n+3 < 2^{n-1}$, for all $n \ge 8$.

Claim For 128, 6n+6 <2"

Pf. In the base case, n=8:

$$6.8 + 6 = 54 < 256 = 28$$

Assume that for some 178, but 6<2°.

By the induction hypothesis,

Since
$$n78$$
, $6<2^n$, so $2^n+6<2^n+2^n=2^{n+1}$

In summary,

$$3(n+1)^2+3(n+1)+1=(3n^2+3n+1)+(6n+6) < 2^n+2^n=2^{n+1}$$

by the induction hypothesis and Claim.

3. Show that there are no positive integer solutions $a, b \in \mathbb{N}$ to the equation $a^2 - b^2 = 10$.

Suppose, by way of contradiction, that there exist $a,b \in \mathbb{N}$ such that $a^2-b^2=10$.

Then $a^2 = b^2 + 10$, so $b^2 + 10$ is a perfect square

Since b'+10>b2, there must be some CEN such that

 $(b+c)^2 = b^2 + 10$.

Expanding the LHS, we have

 $(btc)^2 = b^2 + 2bc + c^2 = b^2 + 10.$

Therefore 2bc+c2=10.

Since $2bc \in \mathbb{N}$, $c^2 < 2bc + c^2 = 10$, so $c \in \{1,2,3\}$.

But since 2bc and 10 are both even, $c^2 = 10 - 2bc$ must also be even, and so c = 2.

Then $2bc+c^2=2b\cdot 2+2^2=4b+4=10$, so 4b=6.

Then b = b/4 & N. so we have a contradiction.

4. Consider the following recursively defined sequence:

$$x_1 = 1,$$
 $x_{n+1} = \frac{x_n}{2} + 1$ $\forall n \in \mathbb{N}.$

- (a) Show that (x_n) is increasing and bounded above.
- (b) Prove that (x_n) converges and find its limit.

Therefore (xn) is increasing, and bounded above by 2

(b) The sequence is also bounded below by $x_i = 1$, since it's increasing. So (x_n) is bounded and monotone, so by the Monotone Convergence Theorem, (x_n) converges.

To find the actual limit, we will find an explicit formula for x_n .

Claim $x_n = \frac{2^n-1}{2^{n-1}}$

pt. In the base case,
$$n=1$$
, and indeed $x_i = 1 = \frac{2^i-1}{2^0}$.
Assume that for some $n \ge 1$, $x_n = \frac{2^n-1}{2^{n-1}}$

Then
$$x_{n+1} = \frac{x_n}{2} + 1 = \frac{2^{n-1}}{2^n} + 1 = \frac{2^{n-1} + 2^n}{2^n} = \frac{2^{n+1} - 1}{2^{(n+1)-1}}$$

We now show that $\lim_{n\to\infty} x_n = \lim_{n\to\infty} \frac{2^n-1}{2^{n-1}} = 2$

Observe that $\frac{2^{n-1}}{2^{n-1}} = \frac{2^{n}}{2^{n-1}} - \frac{1}{2^{n-1}} = 2 - \frac{1}{2^{n-1}}$

Let ε 70. Choose $N \in \mathbb{N}$ such that $2^{N-1} > \frac{t}{\varepsilon}$. Then for all $N > \mathbb{N}$,

$$|2-x_n| = |2-(2-\frac{1}{2^{n-1}})| = \frac{1}{2^{n-1}} < \frac{1}{2^{N-1}} < \epsilon.$$

5. Consider the set of black and white colorings of the numbers in the interval $[0,1] \subset \mathbb{R}$:

$$C:=\{c:[0,1]\to\{\text{black},\text{white}\}\}.$$

Show that card $C > \text{card } \mathbb{R}$. Note the strict inequality.

We first define a bijection between C and P([0,1]).

Define $f: C \longrightarrow \mathcal{P}([0,1])$ by $C \mapsto X_C$,

where $X_c = \{ p \in [0, 1] : c(p) = black \}$

We can also define an inverse: let $g: \mathcal{P}([0,1]) \longrightarrow \mathbb{C}$ be defined by $X \subset [0,1] \longmapsto \mathbb{C}_X$, where for $p \in [0,1]$,

cx(p) = black iff pex.

Since f has an inverse, f is a bijection, so

 $card(c) = card(\mathcal{P}(c_{0}, c_{0}))$

Since $(0,1) \subset [0,1]$, card $([0,1]) \leq \text{card}([0,1])$.

By PS9, $cand(R) = cand(-\Xi, \Xi) = cand(0,1)$

Thus $card(R) \leq card(Co, 17) < card P(Co, 17),$

where the strict inequality corne from the theorem that for any set A, cand A < cand P(A).