MAT 108: Problem Set 2

Solutions

Due 1/24/23 at 11:59 pm on Canvas

Reminders:

- Put your name at the top!
- You will receive feedback on PS1 by next Tuesday, 1/24. PS1 revisions are due Friday, 1/27 at 11:59 pm.
- Dr. Zhang will be away all of next week (no instructor office hours). I will be in Germany, where the time is 9 hours ahead of California. You may email me your questions, and I will respond once daily as usual. The TA will still hold his office hours.

Another reminder Figuring out how to prove something should feel like doing a puzzle. Writing down and expressing your proof should feel like you're trying to write in a new language. Trust the process!

How much detail is needed? In PS2, you no longer need to cite the axioms / propositions from Chapter 1. For example, it's clear to the audience (e.g. your classmates) that -0 = 0.

On the other hand, in Chapter 2, we defined the natural numbers \mathbb{N} using a set of axioms that are not very obvious to your peers. You should cite these axioms as you use them.

Exercise 1

Prove that $1 \in \mathbb{N}$ via a proof by contradiction. Then, deduce that that if $n \in \mathbb{N}$, then $n+1 \in \mathbb{N}$.

Remark. The phrase *deduce that* here is indicating that the second statement follows quite immediately from the first.

SOLUTION.

We want to show that $1 \in \mathbb{N}$. By way of contradiction, assume that 1 is *not* a natural number. Then by Proposition 2.2, we must have $-1 \in \mathbb{N}$ (since $1 \neq 0$).

Now by Axiom 2.1.(ii), since $-1 \in \mathbb{N}$, we must have $(-1) \cdot (-1) = 1 \in \mathbb{N}$. This contradicts our assumption that $1 \notin \mathbb{N}$.

Exercise 2

Definition. Let $m, n \in \mathbb{Z}$. If $m - n \in \mathbb{N}$, then we say *n* is less than *m*, and write n < m. We also say *m* is greater than *n*, and write m > n.

Prove that there exists no integer x such that 0 < x < 1.

SOLUTION.

First, we show by induction that for all $k \in \mathbb{N}$, $k \ge 1$ (i.e. k = 1 or k > 1).

Let $A = \{k \in \mathbb{Z} : k \ge 1\}$. (Base case) If k = 1, then $k \ge 1$, so $1 \in A$. (Induction step) Suppose $n \ge 1$. Since $(n+1) - n = 1 \in \mathbb{N}$, we have n+1 > n > 1. By transitivity, we have $n+1 \ge 1$ as well, so $n+1 \in A$.

By Axiom 2.15, since since $1 \in A$ and we have shown that if $n \in A$ then $n + 1 \in A$, we have $\mathbb{N} \subseteq A$, i.e. for any natural number $k, k \geq 1$.

We now show using proof by contradiction that there is no integer m such that 0 < m < 1. Note that this means $m \neq 0$ and $m \neq 1$.

By way of contradiction, suppose that there is an integer m such that 0 < m < 1. Then

$$m - 0 = m \in \mathbb{N}$$
 and $1 - m \in \mathbb{N}$.

In the previous paragraph, we showed that, since $m \in \mathbb{N}$, $m \ge 1$. Since $m \ne 0$, we must have m > 1, i.e. $m - 1 \in \mathbb{N}$. But we also have $1 - m \in \mathbb{N}$. But this is impossible by Proposition 2.2: since $m \ne 1$, both m - 1 and 1 - m = -(m - 1) are not 0, so only one of them can be in \mathbb{N} .

Exercise 3

Use induction to prove that for any $n \in \mathbb{N}$, the following formula holds:

$$1 + 2 + 3 + \ldots + (n - 1) + n = \frac{n(n + 1)}{2}.$$

SOLUTION.

We will induct on n. In the base case, n = 1, and indeed $1 = \frac{1(1+1)}{2}$. For the induction step, assume that

$$1 + 2 + 3 + \ldots + (n - 1) + n = \frac{n(n + 1)}{2}.$$

We want to show that

$$1 + 2 + 3 + \ldots + (n - 1) + n + (n + 1) = \frac{(n + 1)(n + 2)}{2}$$

By the induction hypothesis, the left-hand side is equal to

$$\frac{n(n+1)}{2} + (n+1)$$

Combining fractions and expanding, we have

$$\frac{n(n+1)}{2} + (n+1) = \frac{n(n+1) + 2(n+1)}{2} = \frac{(n+2)(n+1)}{2} = \frac{(n+1)(n+2)}{2}.$$

Exercise 4

Definition. Let $p \in \mathbb{N}$. If the only $k \in \mathbb{N}$ such that $k \mid p$ are k = 1 and k = p, then p is prime.

Prove that there are infinitely many prime numbers.

Remark. We haven't rigorously discussed the term *infinite* just yet. We will discuss cardinality in detail in a few weeks. For now, *infinite* means *not finite*.

You should begin by assuming there are finitely many prime numbers, so that you can label them $p_1, p_2, p_3, \ldots, p_n$ for some finite $n \in \mathbb{N}$. Then try to derive a contradiction.

You may use the following Lemma without proof:

Lemma. Let p be a prime number, and let $m \in \mathbb{N}$. If p divides m, then p does not divide m + 1.

(Proving this lemma will be easier once we've developed the language of *modular arithmetic* later on in the course.)

SOLUTION.

By way of contradiction, suppose that there are finitely many primes. Label these p_1, p_2, \ldots, p_n , where $n \in \mathbb{N}$. Let $P = p_1 \cdot p_2 \cdot \ldots \cdot p_n$. Then for all $i, p_i \mid P$.

Now consider the number P + 1. Since all $p_i \mid P$, by the lemma we know that none of the p_i divide P + 1. This contradicts the fact that every natural number has a prime decomposition.