
MAT 108: Problem Set 2

Solutions

Due 1/24/23 at 11:59 pm on Canvas

Reminders:

• Put your name at the top!

• You will receive feedback on PS1 by next Tuesday, 1/24. PS1 revisions are due Friday, 1/27
at 11:59 pm.

• Dr. Zhang will be away all of next week (no instructor office hours). I will be in Germany,
where the time is 9 hours ahead of California. You may email me your questions, and I will
respond once daily as usual. The TA will still hold his office hours.

Another reminder Figuring out how to prove something should feel like doing a puzzle. Writing
down and expressing your proof should feel like you’re trying to write in a new language. Trust
the process!

How much detail is needed? In PS2, you no longer need to cite the axioms / propositions
from Chapter 1. For example, it’s clear to the audience (e.g. your classmates) that −0 = 0.

On the other hand, in Chapter 2, we defined the natural numbers N using a set of axioms that
are not very obvious to your peers. You should cite these axioms as you use them.

Exercise 1

Prove that 1 ∈ N via a proof by contradiction. Then, deduce that that if n ∈ N, then
n+ 1 ∈ N.

Remark. The phrase deduce that here is indicating that the second statement follows quite im-
mediately from the first.

Solution.
We want to show that 1 ∈ N. By way of contradiction, assume that 1 is not a natural number.

Then by Proposition 2.2, we must have −1 ∈ N (since 1 ̸= 0).
Now by Axiom 2.1.(ii), since −1 ∈ N, we must have (−1) · (−1) = 1 ∈ N. This contradicts our

assumption that 1 ̸∈ N.
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Exercise 2

Definition. Let m,n ∈ Z. If m− n ∈ N, then we say n is less than m, and write n < m. We also
say m is greater than n, and write m > n.

Prove that there exists no integer x such that 0 < x < 1.

Solution.
First, we show by induction that for all k ∈ N, k ≥ 1 (i.e. k = 1 or k > 1).
Let A = {k ∈ Z : k ≥ 1}. (Base case) If k = 1, then k ≥ 1, so 1 ∈ A. (Induction step) Suppose

n ≥ 1. Since (n + 1) − n = 1 ∈ N, we have n + 1 > n > 1. By transitivity, we have n + 1 ≥ 1 as
well, so n+ 1 ∈ A.

By Axiom 2.15, since since 1 ∈ A and we have shown that if n ∈ A then n + 1 ∈ A, we have
N ⊆ A, i.e. for any natural number k, k ≥ 1.

We now show using proof by contradiction that there is no integer m such that 0 < m < 1.
Note that this means m ̸= 0 and m ̸= 1.

By way of contradiction, suppose that there is an integer m such that 0 < m < 1. Then

m− 0 = m ∈ N and 1−m ∈ N.

In the previous paragraph, we showed that, since m ∈ N, m ≥ 1. Since m ̸= 0, we must have
m > 1, i.e. m − 1 ∈ N. But we also have 1 − m ∈ N. But this is impossible by Proposition 2.2:
since m ̸= 1, both m− 1 and 1−m = −(m− 1) are not 0, so only one of them can be in N.

Exercise 3

Use induction to prove that for any n ∈ N, the following formula holds:

1 + 2 + 3 + . . .+ (n− 1) + n =
n(n+ 1)

2
.

Solution.

We will induct on n. In the base case, n = 1, and indeed 1 =
1(1 + 1)

2
.

For the induction step, assume that

1 + 2 + 3 + . . .+ (n− 1) + n =
n(n+ 1)

2
.

We want to show that

1 + 2 + 3 + . . .+ (n− 1) + n+ (n+ 1) =
(n+ 1)(n+ 2)

2
.

By the induction hypothesis, the left-hand side is equal to

n(n+ 1)

2
+ (n+ 1).

Combining fractions and expanding, we have

n(n+ 1)

2
+ (n+ 1) =

n(n+ 1) + 2(n+ 1)

2
=

(n+ 2)(n+ 1)

2
=

(n+ 1)(n+ 2)

2
.
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Exercise 4

Definition. Let p ∈ N. If the only k ∈ N such that k | p are k = 1 and k = p, then p is prime.

Prove that there are infinitely many prime numbers.

Remark. We haven’t rigorously discussed the term infinite just yet. We will discuss cardinality
in detail in a few weeks. For now, infinite means not finite.

You should begin by assuming there are finitely many prime numbers, so that you can label
them p1, p2, p3, . . . , pn for some finite n ∈ N. Then try to derive a contradiction.

You may use the following Lemma without proof:

Lemma. Let p be a prime number, and let m ∈ N. If p divides m, then p does not divide m+ 1.

(Proving this lemma will be easier once we’ve developed the language of modular arithmetic
later on in the course.)

Solution.
By way of contradiction, suppose that there are finitely many primes. Label these p1, p2, . . . , pn,

where n ∈ N. Let P = p1 · p2 · . . . · pn. Then for all i, pi | P .
Now consider the number P + 1. Since all pi | P , by the lemma we know that none of the pi

divide P + 1. This contradicts the fact that every natural number has a prime decomposition.
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