
MAT 108: Problem Set 3

Solutions

Due 1/31/23 at 11:59 pm on Canvas

Reminders:

• Your homework submission must be typed up in full sentences, with proper mathematical
formatting.

• Midterm Exam 1 is Wednesday, 2/1 next week. This problem set contains both regular
“graded” exercises as well as review problems for the exam. The review problems will only
be graded once for completion.

• You will receive feedback on PS2 by next Tuesday, 1/31. PS2 revisions are due Friday, 2/3
at 11:59 pm.

Another reminder As with many math classes, success comes with practice. To study for the
upcoming exam, I would recommend trying to prove the propositions in the textbook (only some
of them were on your homework) rather than memorizing facts.

Exercise 1

(Graded, 10 points) Prove that (A∪B)c = Ac∩Bc. (This is part (b) of Theorem 5.15 (De Morgan’s
Laws).)

Solution.
In order to prove this set equivalence, we will show double inclusion.
First, we show that (A ∪ B)c ⊆ Ac ∩ Bc. Let x ∈ (A ∪ B)c. Then x ̸∈ A ∪ B, i.e. x ̸∈ A or

x ̸∈ B. Without loss of generality, we may assume that x ̸∈ A. Then x ∈ Ac ⊂ Ac ∪Bc.
Next, we show that (Ac∩Bc) ⊆ (A∪B)c. In other words, we want to show that if x ∈ (Ac∩Bc),

then x is not in A ∪ B. We will instead show the contrapositive, which states that if x ∈ A ∪ B,
then x is not in (Ac ∩Bc).

Suppose x ∈ A∪B. Then x ∈ A or x ∈ B, so without loss of generality we may assume x ∈ A.
Then x ̸∈ Ac, so it is in particular not in Ac ∩Bc, which is a subset of Ac.

Exercise 2

(Graded, 15 points) Let A1, A2, A3, . . . be a sequence of sets.
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(a) Develop recursive definitions for

k⋃
j=1

Aj and
k⋂

j=1

Aj .

(b) Write down and prove an analogue for Theorem 5.15 (a) for these unions and intersections.

(c) Write down and prove an analogue for Theorem 5.15 (b) for these unions and intersections.

Solution.

(a) Explicitly,
⋃k

j=1Aj should mean A1 ∪A2 ∪ · · · ∪Ak. To define this recursively, we let

k⋃
j=1

Aj = A1

and use the recurrence relation

k+1⋃
j=1

Aj =

 k⋃
j=1

Aj

 ∪Ak+1.

Similarly, to define
⋂k

j=1Aj , we let
k⋂

j=1

Aj = A1

and use the recurrence relation

k+1⋂
j=1

Aj =

 k⋂
j=1

Aj

 ∩Ak+1.

(b) Let A1, . . . , Ak be sets. We will show that k⋂
j=1

Aj

c

=
k⋃

j=1

(Ac
j).

Recall that Theorem 5.15(a) tells us that

(A ∩B)c = Ac ∪Bc.

In the base case, k = 2, and the equation is equivalent to Theorem 5.15 (a), by setting A = A1

and B = A2.

Now assume that the equality holds for some k ≥ 2. Let A =
⋂k

j=1Aj and B = Ak+1.
Theorem 5.15(a) tells us thatk+1⋂

j=1

Aj

c

=

 k⋂
j=1

Aj

c

∪Ac
k+1.
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By the induction hypothesis,
(⋂k

j=1Aj

)c
=

⋃k
j=1(A

c
j).

Therefore k+1⋂
j=1

Aj

c

=

 k⋃
j=1

Ac
j

 ∪Ac
k+1 =

k+1⋃
j=1

(Aj)
c.

(c) Solution omitted. This is very similar to the previous proof.

Exercise 3

(Graded, 10 points) Prove that if a2(b2 − 2b) is odd, then a and b are (both) odd. (Hint: Try
proving the contrapositive of the statement instead.)

Solution.
We will instead prove the contrapositive. That is, we will show that if at least one of a or b

is even, then a2(b2 − 2b) will be even. Since a and b are not interchangeable in the statement, we
need to consider both cases separately.

First, consider the case where a is even, so that there is some k ∈ Z such that a = 2k. Then

a2(b2 − 2b) = 2k · a(b2 − 2b) = 2(ka(b2 − 2b)

is even.
Second, consider the case where b is even, so that there is some j ∈ Z where b = 2j. Then

a2(b2 − 2b) = b · a2(b− 2) = 2j · a2(b− 2) = 2(ja2(b− 2))

is even.

Exercise 4

(Graded, 10 points) The Fibonacci numbers (fj)
∞
j=1 are defined by f1 := 1, f2 := 1, and the

recurrence relation
fn = fn−1 + fn−2 for n ≥ 3.

Prove that for all k,m ∈ N (m ≥ 2),

fm+k = fm−1fk + fmfk+1.

(Hint: First decide the statements your induction argument intends to prove. What variable are you
inducting on? Then, remember that the recurrence relation for Fibonacci numbers is an available
and relevant tool. You may wish to take a look at the paragraph about strong induction in the
textbook.)

Solution.
(There are many similar ways to prove this statement. Here is one such way.)
Let n be a natural number. Let P (n) be the statement the following statement:
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For all m, k ∈ N such that m ≥ 2 and k ≥ 1 (so that m− 1 ∈ N) and n = m+ k,

fm+k = fm−1fk + fm + fk+1.

We will induct on n.
In the base case, m = 2 and k = 1, so we consider n = 3. Indeed,

fm−1fk + fm + fk+1 = f1 · f1 + f2 · f2 = 1 · 1 + 1 · 1 = 2 = f3.

Now consider a fixed n > 3, and assume that P (j) holds for all 3 ≤ j ≤ n. We want to show
that P (n + 1) holds. Observe that it suffices to check that for all m, k such that m + k = n, the
following two equations hold:

f(m+1)+k = fmfk + fm+1fk+1 (1)

and
fm+(k+1) = fm−1fk+1 + fmfk+2. (2)

To prove Equation 1, we begin from the right-hand side of the equation and use the recurrence
relation:

fmfk + fm+1fk+1 = (fm−1 + fm−2)fk + (fm + fm−1)fk+1

= (fm−1fk + fm−2fk) + (fmfk+1 + fm−1fk+1).

After reordering the terms, this is

= (fm−1fk + fmfk+1) + (fm−2fk + fm−1fk+1).

By the induction hypothesis, P (n) is true, so

(fm−1fk + fmfk+1) = fm+k = fn,

and P (n− 1) is true, so

(fm−2fk + fm−1fk+1) = f(m−1)+k = fn−1.

Therefore
fmfk + fm+1fk+1 = fn + fn−1 = fn+1 = fm+k+1.

This is Equation 1.
To prove Equation 2, we again begin on the right-hand side. We similarly expand the two terms

using the recurrence relation:

fm−1fk+1 + fmfk+2

= fm−1(fk + fk−1) + fm(fk+1 + fk)

= (fm−1fk + fm−1fk−1) + (fmfk+1 + fmfk)

and then combine terms using the induction hypothesis:

= fm−1fk + fmfk−1 + fm−1fk−1 + fmfk+1

= (fmfk−1 + fm−1fk−1) + (fm−1fk + fmfk+1)

= fm+k + fm+(k−1).

This proves Equation 2.
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Exercise 5

(Graded once for completion, 10 points) Let a1, a2, . . . , an ∈ Z. Prove that if
∏n

i=1 ai = 0, then for
some i, ai = 0.

Solution.
Let P (k) be the statement if

∏k
i=1 ai = 0, then for some i such that 1 ≤ i ≤ k, ai = 0.

On PS2, we showed that if m,m′ ∈ Z and m ·m′ = 0, then m = 0 or m′ = 0. Setting m = a1
and m′ = a2, we see that P (2) is true.

Now suppose P (k) is true, for 2 ≤ k < n. We want to show that P (k + 1) is true. There are
two cases to consider.

First, consider the case where
∏k

i=1 ai = 0. Then by the induction hypothesis, some ai = 0 such
that 1 ≤ i ≤ k. In particular, i ≤ k + 1, so P (k + 1) is true.

In other other case,
∏k

i=1 ai ̸= 0. Then setting m =
∏k

i=1 ai and m′ = ai+1, we know by PS2
that m′ = ak+1 = 0, since at least one of m and m′ must be zero.

In either case, we have exhibited an ai (where i ≤ k + 1 that is zero. By induction, P (n) is
true.

Exercise 6

(Graded once for completion, 5 points) Show that for all k ∈ N, k4 − 6k3 + 11k2 − 6k is divisible
by 4.

Solution.
We will prove this by induction on k.
In the base case, k = 1, and

k4 − 6k3 + 11k2 − 6k = 1− 6 + 11− 6 = 0

which is indeed divisible by 4 (as 0 = 0 · 4).
Now assume that k4 − 6k3 + 11k2 − 6k is divisible by 4, i.e. there is some a ∈ Z such that

k4 − 6k3 + 11k2 − 6k = 4a. We will show that 4 divides

(k + 1)4 − 6(k + 1)3 + 11(k + 1)2 − 6(k + 1).

Expanding this (perhaps using the binomial theorem!) and combining like terms, we get

(k4 + 4k3 + 6k2 + 4k + 1)− 6(k3 + 3k2 + 3k + 1) + 11(k2 + 2k + 1)− 6(k + 1)

= k4 + (4− 6)k3 + (6− 18 + 11)k2 + (4− 18 + 22− 6)k + (1− 6 + 11− 6)

= (k4 − 6k3 + 11k2 − 6k) + (4k3 − 12k2 + 8k + 0)

= 4a+ 4(k3 − 3k2 + 2k)

= 4(a+ k3 − 3k2 + 2k).

where the second to last equality follows from the induction hypothesis. Since

(k + 1)4 − 6(k + 1)3 + 11(k + 1)2 − 6(k + 1) = 4(a+ k3 − 3k2 + 2k),

we have shown (k + 1)4 − 6(k + 1)3 + 11(k + 1)2 − 6(k + 1) is divisible by 4.
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