MAT 108: Problem Set 4

Solutions

Due 2/7/23 at 11:59 pm on Canvas

Reminders:

- Your homework submission must be typed up in full sentences, with proper mathematical formatting. Handwritten homework submissions will receive a score of 0. Solutions containing incomplete sentences or poor formatting will lose points.
- You will receive feedback on PS3 by next Tuesday, 2/7. PS3 revisions are due Friday, 2/10 at 11:59 pm. **New policy:** Keep your old solution for PS3. Underneath your old solution, type

\paragraph{Revised solution.}

and then type your revised solution. This will help make the re-grading process go more smoothly. For future problem sets (such as PS4 revisions), you can just use the command

\revisedsolution

to indicate the start of your revised solution.

Exercise 1

Let A, B, C, D be sets. Decide whether each of the following statements is true or false; in each case, either prove the statement or give a counterexample.

(a) $A - (B \cup C) = (A - B) \cup (A - C)$

- (b) $(A \times B) \cup (C \times D) = (A \cup C) \times (B \cup D)$
- (c) $(A \times B) \cap (C \times D) = (A \cap C) \times (B \cap D)$

SOLUTION.

(a) The statement $A - (B \cup C) = (A - B) \cup (A - C)$ is false. As a counterexample, consider the sets

$$A = \{1, 2, 3\}$$
$$B = \{2\}$$
$$C = \{3\}.$$

Then $A - (B \cup C) = \{1\}$ whereas $(A - B) \cup (A - C) = \{1, 3\} \cup \{1, 2\} = \{1, 2, 3\}.$

(b) The statement $(A \times B) \cup (C \times D) = (A \cup C) \times (B \cup D)$ is also false. The intuition is that an element in $C \times B$ is guaranteed to be in the RHS, but not guaranteed to be in the LHS. So, we construct a counterexample where this is the case.

Let $A = \{1\}, B = \{2\}, C = \{3\}$, and $D = \{4\}$. Then

$$(A \times B) \cup (C \times D) = \{(1,2)\} \cup \{(3,4)\} = \{(1,2), (3,4)\}.$$

On the other hand,

$$(A \cup C) \times (B \cup D) = \{1, 3\} \times \{2, 4\} = \{(1, 2), (1, 4), (3, 2), (3, 4)\}.$$

(c) The statement $(A \times B) \cap (C \times D) = (A \cap C) \times (B \cap D)$ is true, and we prove this using double inclusion.

First, we'll show that the LHS is contained in the RHS. Let $(x, y) \in (A \times B) \cap (C \times D)$. Since $(x, y) \in A \times B$, we know that $x \in A$ and $y \in B$. Similarly, $(x, y) \in (C \times D)$, so $x \in C$ and $y \in D$. Therefore $x \in A \cap C$ and $y \in B \cap D$, so $(x, y) \in (A \cap C) \times (B \cap D)$.

Second, we'll show that the RHS is contained in the LHS. Let $(u, v) \in (A \cap C) \times (B \cap D)$. Then u is in both A and C, and v is in both B and D. Therefore (u, v) is in both $A \times B$ and $C \times D$, so indeed $(u, v) \in (A \times B) \cap (C \times D)$.

Exercise 2

For each of the following relations defined on \mathbb{Z} , determine whether it is an equivalence relation. If it is, determine the equivalence classes.

- (a) $x \sim y$ if $x \neq y$
- (b) $x \sim y$ if xy > 0
- (c) $x \sim y$ if $x \mid y$ or $y \mid x$

SOLUTION.

- (a) The relation " $x \sim y$ if $x \neq y$ " is not an equivalence relation because it does not satisfy *reflexivity*.
- (b) The relation " $x \sim y$ if xy > 0" is *almost* an equivalence relation. However, it fails the *reflexivity* condition for the element $0 \in \mathbb{Z}$: Since $0 \cdot 0 = 0$ is not greater than $0, 0 \neq 0$.
- (c) The relation $x \sim y$ if $x \mid y$ or $y \mid x$ satisfies the symmetry condition, but fails the *reflexivity* and *transitivity* conditions. Since no integer divides 0 (not even 0), $0 \not\sim 0$, so reflexivity fails. Furthermore, transitivity fails in many cases; for example, $2 \sim 6$ and $6 \sim 3$ (since $2 \mid 6$ and $3 \mid 6$), but $2 \nmid 3$ and $3 \nmid 2$, so $2 \not\sim 3$. So this is also not an equivalence relation.