
MAT 108: Problem Set 5

Solutions

Due 2/14/23 at 11:59 pm on Canvas

Reminders:

• No Monday 1-2 office hours with Dr. Zhang on 2/13. TA office hours on 2/13 and
Thursday, 2/16 office hours are as usual.

• Your homework submission must be typed up in full sentences, with proper mathematical
formatting. Handwritten homework submissions will receive a score of 0. Solutions containing
incomplete sentences or poor formatting will lose points.

• You will receive feedback on PS4 by next Tuesday, 2/14. PS4 revisions are due Friday, 2/17
at 11:59 pm. Underneath your old solution, type

\revisedsolution

and then type your revised solution.

Exercise 1

Consider the set Z/7Z, equipped with the operations addition (+) and multiplication (·). We also
have division, defined as a function

division : Z/7Z× (Z/7Z− {[0]}) → Z/7Z,

which you will be able to define by (x, y) 7→ xy−1 after you’ve completed part (a) below.

Remark. For readability reasons, we will stop using the notation [x] to represent the equivalence
class of x ∈ Z under the “mod 7” relation. In real life, mathematicians just write “2” for [2] ∈ Z/7Z
if the context is clear.

(a) For each of the elements of Z/7Z− {0}, determine its inverse. (Fill in the table provided.)

(b) Fill in the addition table provided below.

(c) Fill in the multiplication table provided below.

(d) An element m ∈ Z is called a square if there exists some n ∈ Z such that n · n = m. We can
make the same definition in Z/7Z. Which elements of Z/7Z − {0} are squares? (Fill in the
chart below.)

(0 is indeed a square, but it’s extra special, so we consider it separately.)
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Remark. Just to be clear, this is an exploration problem. You don’t need to write any proofs;
just work out the calculations and fill in the tables below!

Solution.

(a)

Element of Z/7Z− {0} Inverse element

1 1

2 4

3 5

4 2

5 3

6 6

(b)

0 1 2 3 4 5 6

0 0 1 2 3 4 5 6

1 1 2 3 4 5 6 0

2 2 3 4 5 6 0 1

3 3 4 5 6 0 1 2

4 4 5 6 0 1 2 3

5 5 6 0 1 2 3 4

6 6 0 1 2 3 4 5

(c)

0 1 2 3 4 5 6

0 0 0 0 0 0 0 0

1 0 1 2 3 4 5 6

2 0 2 4 6 1 3 5

3 0 3 6 2 5 1 4

4 0 4 1 5 2 6 3

5 0 5 3 1 6 4 2

6 0 6 5 4 3 2 1

(d)
Squares: 1,2,4

Non-squares: 3,5,6
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Exercise 2

Let x, y ∈ R>0. Show that if x < y, then 0 < 1
y < 1

x .

Remark. Remember that you have many properties and axioms to use from Sections 8.1 and 8.2.
We didn’t explicitly cover them in class if they come from axioms that Z also satisfied; in that case,
the proofs for Z and for R are identical.

Solution.
Let x, y ∈ R>0 and suppose that x < y. First, note that

x · 1
x
= 1 = y · 1

y

by the definition of multiplicative inverses. Since y > x, we then have

y · 1
x
> x · 1

x
= y · 1

y
,

i.e.

y · 1
x
> y · 1

y
.

By Proposition 8.37.(ii), since y > 0, we now have

1

x
>

1

y
.

It remains to show that 1
y > 0. To show this, we will use Proposition 8.36, which states:

If a, c ∈ R>0 and b ∈ R, then if ab = c, then b ∈ R>0.

Let a = y, b = 1
y , and c = 1. Since y, 1 ∈ R>0, we have that 1

y ∈ R>0 as well.
Putting the two inequalities together, we arrive at

1

x
>

1

y
> 0.

Exercise 3

In class, we talked about upper bounds (Section 8.4). In this problem, you will prove some analogous
facts for lower bounds.

(a) Let B ⊆ R be a nonempty subset. Give a precise definition for the infimum inf(B) of B, i.e.
the greatest lower bound for B.

(b) Give a definition for min(B), the smallest element of B. (Note that in class we only defined
this function for subsets of Z; your definition should be very similar.) Then, prove the
following analogue to Proposition 8.49:

Proposition. Let A ⊆ R be nonempty. If inf(A) ∈ A, then inf(A) = min(A). Conversely, if
A has a smallest element, then min(A) = inf(A) and inf(A) ∈ A.
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Solution.

Remark. Note that in this solution, I use the the term the infimum, implying that it is
unique. We will see / have seen in class that suprema are unique; the proof of uniqueness is
similar for infima.

(a)

Definition. Let B ⊆ R be a nonempty subset. If there exists an a ∈ R such that for all
lower bounds a′ for B, a ≥ a′, then we call a the infimum of B, denoted inf(B).

(b)

Definition. Let B be a nonempty subset of R. If there exists a ∈ such that for all
b ∈ B, a ≤ b, then a = min(B).

We now prove the proposition. Let A ⊆ R be a nonempty subset.

First, suppose inf(A) exists and is an element of A. By definition, inf(A) is the greatest
lower bound for A. In particular, inf(A) is a lower bound for A, i.e. for all a ∈ A,
inf(A) ≤ a. Since inf(A) ∈ A also, by our definition of min(A) above, inf(A) = min(A).

Now we show the converse. Suppose A has a smallest element called min(A) ∈ A. It
suffices to show that min(A) is also inf(A), since this implies that inf(A) = min(A) ∈ A.
To show this, we need to show that, for any lower bound b of A, b ≤ min(A), as this is
our definition of the infimum. But since for all a ∈ A, b ≤ a, in particular min(A) ∈ A,
so b ≤ a indeed. Therefore min(A) = inf(A) ∈ A.
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