
MAT 108: Problem Set 7

(ADD NAME)

Due 2/28/23 at 11:59 pm on Canvas

Reminders:

• Exam 2 is Wednesday, March 1, in class. It will cover all the material we covered in February,
including all the material on PS 4–7.

– To study for this exam, I recommend solving problems from the book, and also making
sure you are able to solve previous PS exercises.

– Once again, style will be very important. If you lost style points on Exam 1, I urge you
to look at the comments on your graded Exam 1 and ask me or Hans if you aren’t sure
why you lost style points.

– Discussion on Tuesday, 2/28 will a review session where you’ll have the opportunity to
practice solving problems similar in flavor to those on the exam.

• Your homework submission must be typed up in full sentences, with proper mathematical
formatting. Handwritten homework submissions will receive a score of 0. Solutions containing
incomplete sentences or poor formatting will lose points.

• You will receive feedback on PS6 by next Tuesday, 2/28. PS5 revisions are due Friday, 3/3
at 11:59 pm. Underneath your old solution, type

\revisedsolution

and then type your revised solution.

Exercise 1

Prove that limits of sequences of real numbers are unique.
Hint: In other words, prove that if (xk) converges to L1 and to L2, then L1 = L2. (This is a

uniqueness statement.)

Solution.
Let (xk) be a sequence of real numbers that converges to both L1 and L2. To show that L1 = L2,

it suffices to show that given any ε > 0, |L1 − L2| < ε (Proposition 10.11, discussed in class).
Let ε > 0. Since (xk) converges to L1, there is some N1 such that for all n ≥ N1,

|xn − L1| <
ε

2
.

Since (xk) also converges to L2, there is some N2 such that for all n ≥ N2,

|xn − L2| <
ε

2
.
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Let N = max{N1, N2}. Then for all n ≥ N ,

|L1 − L2| = |L1 − xn + xn − L2| ≤ |L1 − xn|+ |xn − L2| ≤
ε

2
+

ε

2
= ε,

where the first inequality is the triangle inequality for absolute value.

Exercise 2

The Monotone Convergence Theorem is a powerful tool in analysis. It states that

Every monotonic bounded sequence converges.

In class, we proved that every increasing bounded sequence converges (Theorem 10.19). Prove the
analogous statement to Theorem 10.19 for decreasing bounded sequences.

(Write down the precise statement you are proving before you prove it. The Proposition envi-
ronment has been included in the solution area below.)

Solution.

Proposition. Every decreasing bounded sequence converges.

Proof. Let (xk)
∞
k=1 be a decreasing and bounded sequence. By the Completeness Axiom, since

the set {−xk : k ∈ N} is bounded, it has a supremum s. Then −s is the infimum of the set
X = {xk : k ∈ N}.

We claim that −s = limk→∞ xk. To prove this, let ε > 0. Then −s+ ε is not an upper bound
for X, since −s + ε > −s and −s is the greatest lower bound. Therefore there exists N ∈ N such
that xN < −s+ ε. But (xk) is decreasing, so for all n > N ,

−s ≤ xn ≤ xN ≤ −s+ ε,

i.e. |xn − (−s)| < ε. In other words, −s = limk→∞ xk.

Exercise 3

We can restate the Monotone Convergence Theorem as follows:

If a sequence is monotone and bounded, then it converges.

In this exercise, you will see that monotone, bounded sequences are “special” within the set of
convergence sequences.

(a) Prove the following partial converse to the Monotone Convergence Theorem:

Proposition. If a sequence converges, then it is bounded.

(b) Notice that the partial converse does not conclude that the converging sequence must also be
monotone. Give an example of a sequence that converges but is not monotone. Make sure
you prove that your sequence indeed converges and is indeed not monotone!

Solution.
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(a) Let (xk) be a convergent sequence, and let L = limk→∞ xk. Then (for ε = 1,) there exists
N ∈ N such that for all n ≥ N , |xn − L| < 1.

Define two sets
A = {xk : k < N} and B = {xk : k ≥ N}

so that the set of all terms in (xk) is equal to A ∪ B. The set A is finite, so it is bounded
below by minA and above by maxA. By our choice of N , for all b ∈ B, L− 1 ≤ b ≤ L+ 1.

Thus for all xk ∈ A ∪B,

min{minA,L− 1} ≤ xk ≤ max{maxA,L+ 1},

so the sequence (xk) is bounded.

(b) Consider the sequence (xk)
∞
k=1 where

xk =
(−1)k

k
.

This sequence begins with the terms −1, 12 ,−
1
3 ,

1
4 , · · · . The terms alternate between positive

and negative real numbers, and therefore alternates between increasing and decreasing. That
is, for k ≥ 2, if k is even, then xk > 0 > xk−1; if k is odd, then xk < 0 < xk−1.

Nevertheless, we show the sequence converges to 0. Let ε > 0. Since N is unbounded, there
exists some N such that N > 1

ε . Then for all n ≥ N ,

|xn − 0| =
∣∣∣∣± 1

n

∣∣∣∣ = 1

n
<

1

N
< ε,

so limk→∞ xk = 0.

Exercise 4

Definition. An integer n is a perfect square if n = m2 for some m ∈ Z.

Prove that if r ∈ N is not a perfect square, then
√
r is irrational. Hint: Emulate the proof of

Proposition 11.10, which states that
√
2 is irrational.

Solution.
Fix r ∈ N and suppose that r is not a perfect square. Suppose, by way of contradiction, that√

r ∈ Q, so that we may write √
r =

m

n

with m,n ∈ N, in reduced terms (where m and n have no common factors). Then

r =
m2

n2
=

m

n
· m
n

so we may write
m

n
=

rn

m

by multiplying both sides by n
m ̸= 0.

Since m
n is in lowest terms, Proposition 11.5 tells us that n | m, i.e. m

n =
√
r ∈ Z. But

√
r
2
= r

is not a perfect square, so we have a contradiction.
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