
MAT 108: Problem Set 9

Solutions

Due 3/14/23 at 11:59 pm on Canvas

Reminders:

• Your homework submission must be typed up in full sentences, with proper mathematical
formatting. Handwritten homework submissions will receive a score of 0. Solutions containing
incomplete sentences or poor formatting will lose points.

• You will receive feedback on PS8 by next Tuesday, 3/14. PS8 revisions are due Friday, 3/17
at 11:59 pm. Underneath your old solution, type

\revisedsolution

and then type your revised solution.

• All assignments for this course, except the final exam, must be submitted by Friday, 3/17 at
11:59 pm; no extensions will be possible beyond this time.

Grading for this problem set This problem set will be graded for completion: an honest
attempt given to solve the problem will be given full marks. The solutions will be posted two days
after the set is due so that you can verify your own answers.

Exercise 1

Describe an algorithm for “counting” the countable set N3 = N× N× N. In other words, describe
how one could construct a bijective function N → N3.

Your description doesn’t need to be 100% rigorous; this would take a long time to write down.
However, your description needs to be clear enough so that a hypothetical classmate who hasn’t
thought about this problem would be able to understand how to count N3, and understand why your
counting method would reach any given element in N3 in finite time.

Hint. Think about how we “counted” N× N or Z× Z in class.

Solution.
Here’s one way to count N3. For each k ∈ N where k ≥ 3, let Sk ⊂ N3 denote the subset of

triples (a, b, c) where a+ b+ c = k. For example,

S3 = {(1, 1, 1)}
S4 = {(2, 1, 1), (1, 2, 1), (1, 1, 2)}
S5 = {(3, 1, 1), (1, 1, 3), (1, 3, 1), (2, 2, 1), (2, 1, 2), (1, 2, 2)}
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For any fixed k, the size of the set Sk is finite, and so we can count it in finitely many steps.
To see that Sk is finite, notice that there are at most k choices for values in each of the three
components (and furthermore, many triples we get this way aren’t even in Sk), so card Sk ≤ k3.

Since N3 =
⋃∞

k=3, we can count N3 by first counting everything in S3, then everything in S4,
then S5, then S6, and so on.

Remark. This solution comes from thinking of N3 as all the lattice points in a 3D space whose
coordinates are positive integers. One might call this region of xyz-space the first octant. Each
batch we count is a slice of the octant.

Exercise 2

Prove that the open interval (−π
2 ,

π
2 ) has the same cardinality as R.

Hint. You need to find a bijection between the two sets. Do you know of a function from calculus
class that gives a bijection (−π

2 ,
π
2 ) → R?

Remark. Once we know that one open interval has the same cardinality as R, by scaling and
translating using a linear function, we can show that any open interval (a, b) ⊂ R (where a < b)
has the same cardinality as R.

Solution.
Consider tangent function tan : (−π

2 ,
π
2 ) → R. It is injective, since if tan θ1 = tan θ2, then

|θ1− θ2| is a multiple of π; since the domain is (−π
2 ,

π
2 ), that multiple must be 1, and θ1 = θ2. This

function is also surjective, since for any real number r ∈ R, if we let θ = arctan(r), then tan(θ) = r.
Therefore tan is bijective, and so card (−π

2 ,
π
2 ) = card R.

Exercise 3

Prove that for each n ∈ N, card P([n]) = card [2n].

Solution.
Here are two solutions to this exercise.

Solution 1 We first define a function fn : P([n]) → Zn
2 , using the following procedure. Given

S ⊂ [n], set the i-th bit of hn(S) to be {
0 if i ̸∈ S

1 if i ∈ S.

The function fn clearly has an inverse: given a sequence of bits w ∈ Zn
2 , construct a subset S of [n]

by throwing in i if and only if the i-th bit of w is a 1. Since fn has an inverse, it is bijective.
Now every w ∈ Zn

2 is a binary string that represents some number in {0, 1, . . . , 2n−1}. Define a
function gn : Zn

2 → [2n] by sending w to the integer it represents (as a binary string), plus one. Now
gn is also a bijection, since we can define an inverse by sending k ∈ 2n to the binary representation
of k − 1.

Then gn ◦ fn is a bijection from P([n]) → [2n].
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Solution 2 We will prove the statement by induction on n. Let Q(n) be the statement

card P([n]) = card [2n], i.e. there exists a bijective function fn : P([n]) → [2n].

In the base case, n = 1, and P([1]) = {∅, {1}}. Then

f1 : P([1]) → [2]

∅ 7→ 1

{1} 7→ 2

is a bijection.
Now assume that for a given n, there is a bijective function fn : P([n]) → [2n]. We construct a

bijective function fn+1 : P([n+ 1]) → [2n+1] as follows.
Observe that if a subset S ⊂ [n+ 1] does not contain n+ 1, then it is also a subset of [n], and

so fn(S) is defined.
For a subset S ⊂ [n+ 1], let

fn+1(S) =

{
fn(S) if n+ 1 ̸∈ S

fn(S − {n+ 1}) if n+ 1 ∈ S

In other words, the subsets of [n+ 1] that do not contain n+ 1 are mapped to

[2n] = {1, 2, . . . , 2n − 1, 2n},

and then the subsets that do contain n+ 1 are mapped to

[2n+1]− [2n] = {2n + 1, 2n + 2, . . . , 2n+1 − 1, 2n+1}.

We now show that fn+1 is bijective.
We first show that fn+1 is injective. Suppose S, S′ ⊂ [n+ 1] satisfy fn+1(S) = fn+1(S

′). Then
either (a) fn+1(S) ∈ [2n] or (b) fn+1(S) ∈ [2n+1]− [2n]. If we are in case (a), then S and S′ both
do not contain n+ 1; then, since fn is injective, we have S = S′. If we are in case (b), then S and
S′ both contain n + 1; then S − {n + 1} and S′ − {n + 1} must again be the same set T because
fn is injective; then S = T ∪ {n+ 1} = S′ as well.

We now show that fn+1 is surjective. As stated previously, every subset T ⊂ [n] is also a
subset of [n + 1]. There are 2n = card P([n]) of these. The set {T ∪ {n + 1} : T ∈ P([n])}
also has 2n elements, as they are clearly in bijection with P([n]). We therefore have a total of
2n+2n = 2n+1 elements that are injectively mapped by fn+1 to the set [2n+1], which also has 2n+1

elements. Therefore fn+1 must be surjective; otherwise, the Pigeonhole Principle would show that
the function is not injective.

In summary, we have constructed a bijective function fn+1 : P([n+ 1]) → [2n+1], so

card P([n+ 1]) = card [2n+1]

indeed.

3


