MAT 108: Final Exam Study Guide

March 14, 2023

1 Important Information

- Location: Walker 1320
- Date: Thursday, March 23rd, 2023
- Time: 6:00 pm 8:00 pm

2 Topics covered this quarter

- Axiomatic approach
 - axioms
 - if-then statements
 - uniqueness and existence
- Induction
 - natural numbers
 - recursion
- Symbolic logic
 - for all, there exists, negation
 - implications
 - $-\,$ converse, inverse, contrapositive
 - proof by contradiction
- Set theory
 - sets, functions between sets
 - unions, intersections, complements
 - De Morgan's laws
 - Cartesian products
- Functions
 - injections, surjections

- bijections
- domain, codomain, image, preimage
- Equivalence relations
 - criteria for equivalence relations
 - $-\mathbb{Z}/n\mathbb{Z}=\mathbb{Z}_n, \mathbb{Z}/p\mathbb{Z}=\mathbb{Z}_p$
- Numbers, our main examples
 - $\mathbb{N}, \mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{R} \mathbb{Q}$
 - Well-ordering principle
 - functions, injections, surjections, bijections
 - upper/lower bounds
 - Completeness Axiom
- Norms and distance functions
 - absolute value and distance between real numbers
 - other norms and how they define distance functions
 - criteria for distance functions / norms
- Limits
 - sequences
 - convergence, divergence
 - $-\varepsilon N$ definition of a limit
 - Monotone Convergence Theorem
 - square roots
- Infinite series
 - sequence of terms, sequence of partial sums
 - sum of a series
 - convergence, divergence, Comparison Test
 - decimal and binary expansions
 - examples of convergence: geometric series
 - example of divergence: harmonic series
- Cardinality
 - definition of card (A)
 - cardinality for finite sets
 - countable, countably infinite, continuum
 - comparing cardinalities $(\leq, <)$
 - powersets
 - Cantor's diagonalization argument

3 Mock Exam

Solutions to this Mock Exam will be posted by Monday of finals week.

- 1. Assume the following two *axioms*:
 - A1 The area of a planar rectangle with sides $a, b \in \mathbb{R}$ is the product $a \cdot b$.
 - A2 The area of two planar figures which intersect at most along edges is the sum of areas of each of the planar figures.

Use Axioms 1 and 2 to deduce that the area of the triangle with height $h \in \mathbb{R}$ and base $b \in \mathbb{R}$ equals $(b \cdot h)/2$.

2. Prove that for $n \ge 8$,

$$3n^2 + 3n + 1 < 2^n$$

- 3. Show that there are no positive integer solutions $a, b \in \mathbb{N}$ to the equation $a^2 b^2 = 10$.
- 4. Consider the following recursively defined sequence:

$$x_1 = 1, \qquad x_{n+1} = \frac{x_n}{2} + 1 \qquad \forall \ n \in \mathbb{N}.$$

- (a) Show that (x_n) is increasing and bounded above.
- (b) Prove that (x_n) converges and find its limit.
- 5. Consider the set of black and white colorings of the numbers in the interval $[0,1] \subset \mathbb{R}$:

 $C := \{c : [0, 1] \rightarrow \{\text{black}, \text{white}\}\}.$

Show that card C >card \mathbb{R} . Note the strict inequality.

4 More Practice Problems

See your book for more practice problems. I will not be providing solutions for these. Select problems in this list will be covered in Discussion.

1. Let $k \in \mathbb{N}$. Consider a $2^k \times 2^k$ square board divided into equal square tiles of size 1×1 , like a chess board. (Thus the $2^k \times 2^k$ board is covered by $(2^k)^2$ tiles.)

Remove one tile from the $2^k \times 2^k$ board.

Prove by induction that the remaining part of the board can be covered with triomino pieces, i.e. pieces of three unit tiles with an L-shape:

2. Prove that for all $n \in \mathbb{N}$, 7 | $(2^{n+2} + 3^{2n+1})$.

- 3. Prove that for all $n \in \mathbb{N}$, $5 \mid (11^n 6)$.
- 4. Consider the subset $C_0 = [0, 1] \subseteq \mathbb{R}$. Recursively define the sets

$$C_{n+1} = \frac{C_n}{3} \cup \left(\frac{2}{3} + \frac{C_n}{3}\right)$$

for $n \ge 1$, where for an interval A = [a, b],

- A/3 is the interval [a/3, b/3] and
- A + 2/3 is the interval [a + 2/3, b + 2/3].
- (a) Describe and draw the sets C_1, C_2 , and C_3 as a union of explicit intervals.
- (b) Show that the intersection $\bigcap_{n=1}^{\infty} C_n$ is non-empty.
- 5. Consider the set of real numbers

$$A = \left\{ 3 - \frac{1}{n} : n \in \mathbb{N} \right\}.$$

Find $\inf A$ and $\sup A$.